
Insights from Student Solutions to SQL Homework Problems
Seth Poulsen

sethp3@illinois.edu
University of Illinois at Urbana-Champaign

Liia Butler
liiamb2@illinois.edu

University of Illinois at Urbana-Champaign

Abdussalam Alawini
alawini@illinois.edu

University of Illinois at Urbana-Champaign

Geoffrey L. Herman
glherman@illinois.edu

University of Illinois at Urbana-Champaign

Abstract
We analyze the submissions of 286 students as they solved Struc-

tured Query Language (SQL) homework assignments for an upper-
level databases course. Databases and the ability to query them are
becoming increasingly essential for not only computer scientists
but also business professionals, scientists, and anyone who needs
to make data-driven decisions. Despite the increasing importance
of SQL and databases, little research has documented student dif-
ficulties in learning SQL. We replicate and extend prior studies of
students’ difficulties with learning SQL. Students worked on and
submitted their homework through an online learning management
system with support for autograding of code. Students received
immediate feedback on the correctness of their solutions and had
approximately a week to finish writing eight to ten queries. We
categorized student submissions by the type of error, or lack thereof,
that students made, and whether the student was eventually able to
construct a correct query. Like prior work, we find that the majority
of student mistakes are syntax errors. In contrast with the conclu-
sions of prior work, we find that some students are never able to
resolve these syntax errors to create valid queries. Additionally, we
find that students struggle the most when they need to write SQL
queries related to GROUP BY and correlated subqueries. We suggest
implications for instruction and future research.

CCS Concepts
• Applied computing → Education; • Social and profes-

sional topics→ Computer science education; • Information
systems → Information retrieval; Query representation.

Keywords
SQL, database education, online assessment

ACM Reference Format:
Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L. Herman.
2020. Insights from Student Solutions to SQL Homework Problems. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE ’20), June 15–19, 2020, Trondheim, Norway.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.3387391

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387391

1 Introduction
Databases are pervasive and vital to the use, and security of,

sensitive data such as in medical, financial, scientific, and consumer
contexts [7]. They are used not only by software developers, but
by data scientists, researchers, actuaries, accountants, business an-
alysts, product managers, and people working in finance and mar-
keting. People with data-related skill are becoming more and more
in demand [25]. Structured Query Language (SQL) is the de facto
standard for querying relational databases [17]. Indeed, by some
metrics, it is the most in demand programming language [17, 18].
Knowledge of SQL is vital to the use of data science for accelerating
scientific inquiry, business decision-making, and effective health-
care. Critically, SQL does not require prerequisite knowledge of
other programming language paradigms and can be immediately
useful to a wide range of professionals, providing an otherwise
overlooked and underused gateway into computing disciplines.

Writing queries in SQL could very well be a students’ first pro-
gramming experience and their first introduction to formal com-
puting. Unlike the wealth of research on students’ difficulties in
learning imperative, object-oriented, or functional languages, there
has been little research on how students learn SQL. SQL is a declar-
ative query language, which is a completely different paradigm
than other common introductory languages such as Python, Java,
or C. Consequently, the majority of misconceptions and program-
ming difficulties research conducted in these paradigms does not
translate well, if at all, to how people learn SQL. In this paper, we
contribute to the nascent research literature on how students learn
SQL by documenting the types of mistakes that students make
when first learning to write database queries using SQL and their
ability to surmount those mistakes.

In response to recent calls to increase replication studies in Com-
puting Education Research [10], we replicate and extend recent
studies by Ahadi et al. and Taipalus and Perälä [1, 2, 21]. Repli-
cation studies in education research are vital for determining the
replicability of prior findings but also whether findings generalize
to other contexts and other students who have experienced different
curricula and modes of instruction. Ahadi et al. classified student
errors when writing SQL queries from summative exams, while
Taipalus and Perälä looked at homework submissions. We classify
52093 SQL queries written by 286 students over the Summer and
Fall semesters of 2019 while working on formative homework prob-
lems for an upper-level databases course at the University of Illinois
at Urbana-Champaign, a large, public university in the Midwestern
United States. This analysis contributes to the small but growing
body of knowledge on what mistakes students may typically make
while learning to write databases queries.

https://doi.org/10.1145/3341525.3387391
https://doi.org/10.1145/3341525.3387391

2 Literature Review
There has been far less research conducted on teaching SQL

than for teaching students to program in imperative or functional
languages. A few groups of educators have created and assessed
intelligent tutors to help teach SQL [6, 13]. Other researchers have
tried to understand the common mistakes and pitfalls that people
run into while trying to learn to write queries in SQL. Reisner
took a human-factors approach, evaluating SQL as a user interface
and finding that students had a particulary hard time construct-
ing queries requiring correlated subqueries or GROUP BY clauses.
[19, 20]. Welty and Stemple followed Reisner’s lead in methodol-
ogy, verifying her findings and gaining additional insight to the
similar and different struggles of SQL when compared to TABLET,
which was a competing query language at the time [23]. Ahadi et
al. took a more quantitative approach, analyzing about 160,000 SQL
queries written by about 2,300 students to try and understand the
most common errors that students make [1–3]. They also did some
qualitative analysis of the student queries to try to understand why
certain errors were so common [3]. Most studies so far have focused
on the struggles of students during summative assessments, leav-
ing a gap in the literature about the struggles students experience
while working on SQL homework assignments, which has only just
begun being filled by the work of Taipalus and Perälä [21].

All of the above studies agree that students struggle more to
complete queries that include a subquery or a join than queries
that operate only on a single table, without any joins or subqueries.
Ahadi et al. [1] and Welty and Stemple [23] both also point out
GROUP BY clauses as being particularly difficult for students to
construct. By contrast, Reisner [19] found that the primary difficulty
with GROUP BY was students not being able to figure out when they
should use it or not, but that they were able to construct a query
using it properly once they knew if it was needed. Both Reisner [20]
and Ahadi et al. [3] note that not having adequate mental strategies
for solving the problemswas a significant barrier to students success
constructing SQL queries. Reisner, as well as Welty and Stemple,
studied students who had little to no prior programming experience,
whereas Ahadi and his coauthors studied students who already had
a few years of programming experience. The students in all of the
studies had little to no experience using a database query language.

Here we present a replication of the results of prior research in
understanding student behaviours while learning SQL, and extend
them by including data from homework problems dealing with left
outer joins, triggers, stored procedures, and functions, features of
SQL that have not been included in any prior study on learning of
SQL.

3 Data Collection
The University of Illinois at Urbana-Champaign is a research-

intensive, primarily-white institution with 2000 undergraduate CS
majors. Databases is an elective course taken primarily by upper-
level undergraduate and graduate students with prerequisites in-
cluding introduction to programming and data structures. The
course teaches students about database systems covering three
main modules: data models and query languages (relational model:
relational algebra and SQL, graph model: Neo4J, and document-
oriented model: MongoDB), database design (conceptual design and

normal forms), and database implementation (storage and index-
ing, query execution and optimization, concurrency control) with
only five class meetings devoted to teaching students about SQL
queries. We collected data from the Summer and Fall 2019 offerings
of the course, which includes 8 and 10 assigned questions about
SQL queries, respectively. Our sample includes submissions from
286 students, including 95 female and 191 male students.

3.1 Description of Homework Assignments
Students’ assignments were delivered and graded by the online
learning management system PrairieLearn [24]. PrairieLearn pro-
vides support for the random generation of homework problems
and the autograding of students’ code submissions. The students
are allowed unlimited attempts to solve each homework problem
before the due date and receive feedback on the correctness of their
submission after each attempt. Students can attempt problems in
any order and can leave and return to a problem without penalty.

For SQL questions, students are given the database schema rele-
vant to the problem (i.e., they can see the table names and the name
and type of each data value in the tables). Students can not see the
items in the database itself. Below the schema, the students see the
question prompt that their query must address. The database man-
agement system used for the queries is MySQL [16]. The students
have a simple code editor to write their query. The students have
the option to save their submission, or select to save and grade.

When the student selects to have their submission graded, their
submitted query is run against the database. Should the query have a
syntactic error, the MySQL error code and message is reported back
and displayed to the user. If the query successfully runs, the student
can see whether the query was correct (received full points) or
contained a semantic error (did not receive full points). The expected
results and actual results are displayed for feedback. Students are
graded on functional correctness (i.e., the actual results matched the
expected results). Efficiency or use of intended SQL features does
not factor into score, the exception being that teaching assistants
screen submissions after the fact to ensure that all queries are
actually pulling the data from the database, not just writing a query
that hardcodes what they know the expected answer is. To avoid
hardcoding, the autograder also generates random data instance
every time a student submits a query.

3.2 Data Handling
To protect students’ data, PrairieLearn assigns each student a ran-
dom numeric identifier so that an individual student’s data can
be tracked without revealing personally identifiable information.
All graduate research assistants handling the data were trained in
human subjects research protocols.

3.3 A First Look at the Data
We present a few submissions from a series of submissions from one
student solving a problem. The example comes from a homework
question that the instructor intended students to solve by using
a JOIN and a WHERE clause. The prompt for this question showed
the schema for each table in the database (omitted due to space
limitations), along with the following text:

This schema has tables for the customers of
the mobile phone store, purchases made there,
products sold there, and brands of the products
sold. The primary key for each table is under-
lined.

The Customers table includes a unique
CustomerId for each customer. The Purchases
table contains a unique PurchaseId for each
transaction. For the sake of simplicity, we will
assume that a customer can only purchase one
item at a time. The Products table includes a
unique ProductId for each product and other
relevant information. The Brands table includes
a unique BrandName for each company.

Using this mobile phone store schema, write
a SQL query that returns the name of each
brand and the number of brands that were es-
tablished before it.

It is important to note that though the instructor intended the
student to solve this problem using a JOIN, the instructor did not
explicitly tell the students which SQL features to use, following the
philosophy that students will learn how to use SQL better if they
have to figure out which features to use on their own. In fact, some
students solved this problem using a subquery rather than doing
a self-join. The student whose work we examine started with the
following submission, in which it appears that theywere attempting
to make the comparison between rows using a subquery:

SELECT A.BrandName , Count (*)

FROM Brands A, (

SELECT *

FROM Brands B

WHERE A.YearEstablished < B.

YearEstablished

)

This submission generated the following error:
1248 (42000) Every derived table must have its own alias

To resolve that error, the student added an alias for the table
generated by their subquery, but then received another error:
1054 (42S22) Unknown column 'A.YearEstablished'

in 'where clause'

After a few more small changes to their query, each of which
yielded another error, the student backtracked andwrote an entirely
different query. It appears here that they were not trying to write a
correct answer, but perhaps to just get something that worked, and
explore the data set a little bit:

SELECT "Apple", Count (*)

FROM Brands

WHERE YearEstablished < "1976"

They then generalized this new query to one with an implicit
self join:

SELECT BrandName , Count (*)

FROM Brands B, Brands C

WHERE C.YearEstablished < B.YearEstablished

GROUP BY B.BrandName

but this gave yet another error:
1052 (23000) Column 'BrandName' in field list is

ambiguous

With some more exploration and tweaks, the student was even-
tually able to produce a correct solution to the problem:

SELECT B.BrandName , Count (*)

FROM Brands B, Brands C

WHERE C.YearEstablished <= B.YearEstablished

GROUP BY B.BrandName

This brief run-through of a student’s work gives an idea, at a
high level, of the type of information we have available in our
data set. From this example, we can see that this student struggled
through several syntactic errors for each strategy they attempted.
The student had many variants for a single approach and built upon
what they had incrementally.

4 Methodology
We follow the basic methodology of Ahadi et al. [1, 2] by dividing

student mistakes into syntactic errors–errors where the SQL engine
was not able to execute the query and thus returned an error code,
and semantic errors–errors where the SQL engine was able to run
the query and obtain a result set, but the result set was incorrect.

In this paper, we focus mostly on further categorization of syn-
tactic errors, leaving analysis of semantic errors to later work (those
interested in categorization of semantic errors should see [3, 21, 22]).
We categorize syntactic errors using the error codes generated by
the MySQL query engine [16].

We use this analysis to answer the following research questions:
• What are the distributions of submissions resulting in syn-
tactic errors, semantic errors, and correct submissions in
solving SQL homework problems and how do they vary
between question concepts?

• What types of syntactic errors are made by students who
are successful or unsuccessful when solving SQL homework
problems?

5 Results
Table 1 shows the breakdown of syntactic vs. semantic errors

by which concept a given exercise was evaluating, showing that
students struggle more to complete more complex queries. The
total number of submissions for each group of questions can be
seen in table 2, along with the number of attempts and successes
for questions in that category. This gives some insight into the
average number of attempts a student took before completing each
problem.

The breakdown of errors by error code in table 3 shows that
almost 40% of the time a student receives an error message from the
MySQL engine, it is a syntax error. Other errors, such as undefined

Concept Correct Syntactic Error (eventually correct) Semantic Error (eventually correct)
Join and Group By 8% 53% (100%) 36% (99%)
Join and Where 14% 39% (99%) 43% (99%)

Join, Where, and Distinct 27% 36% (100%) 32% (100%)
Table update, Simple Query 19% 45% (99%) 31% (99%)
Left Outer Join and Group By 7% 46% (98%) 44% (98%)

Delete with Subquery 10% 64% (94%) 22% (95%)
Correlated Subquery and Group By 7% 44% (95%) 45% (95%)

Triggers 13% 71% (95%) 11% (97%)
Stored Procedures and Functions 6% 67% (96%) 21% (99%)

Table 1: Breakdown of errors by SQL concept evaluated. This gives some surface-level insight into which types of homework
problems are more difficult. Students are less likely to complete exercises requiring the use of more advanced SQL features.

Concept (# Questions) # Submissions # Student Attempts # Student Successes
Join and Group By (2) 6570 283 282
Join and Where (2) 4354 280 278

Join, Where, and Distinct (2) 1812 278 278
Table update, Simple Query (2) 2446 279 278
Left Outer Join and Group By (2) 7045 276 264

Delete with Subquery (2) 4327 277 266
Correlated Subquery and Group By (4) 16217 535 508

Triggers (1) 3190 196 188
Stored Procedures and Functions (1) 6132 191 185

Table 2: Total number of submissions for each concept. This gives a general idea of howmany submissions from each concept
were in our data set, and sheds light on the fact that it often takes a student many attempts to complete a SQL homework
problem.

% of % of times student encountered error
Error (MySQL error code) syntactic errors and was successful on question

Syntax Error (1064) 48% 96%
Undefined Column (1054) 15% 96%

Summary Column not Included in Group By (1055) 6% 97%
Summary Column used without Group By (1140) 4% 97%

Column identifier is ambiguous (1052) 3% 98%
Undefined Table (1146) 3% 96%

Invalid use of aggregating function (1111) 2% 98%
Derived table must have own alias (1248) 2% 98%
Subquery returns more than 1 row (1242) 1% 99%

Duplicate Entry (1062) 1% 99%
Subquery returns more than 1 column (1241) 1% 97%

Expression in ORDER BY not in SELECT (3065) 1% 97%
Table 3: Breakdown of Syntactic errors.

column and errors related to GROUP BY, were also strong indicators
of a student not being able to finish a problem successfully.

Table 4 shows the last errors that a student encountered before
giving up on a problem, revealing that, contrary to prior results,
students aren’t always able to overcome syntax errors. Table 5
gives a breakdown of MySQL error codes based on the question the
student was solving at the time, giving some insight into what was
difficult about particular exercises. Another interesting observation
from table 5 is that even though the solutions for triggers, functions,

and stored procedures, are longer and arguably more complex than
other queries, there isn’t any particular type of error that students
struggled with, they mostly ran into syntax errors, just like on any
of the other exercises. Trends were very similar across the two
semesters from which we pulled our data (Summer and Fall 2019).

6 Discussion
Table 1 shows that a substantial portion of these errors that were

unrecoverable occur in questions that intend the student to use a

Percent of failed
Error final submissions (number)
Semantic Error 58% (75)
Syntax Error (1064) 27% (36)
Undefined Column (1054) 3% (4)
Undefined Table (1146) 3% (4)
Summary Column not Included
in Group By (1055)

2% (3)

Invalid use of aggregating func-
tion (1111)

1% (2)

Table 4: Last Error before Student Gives up on Problem.
More than half the time (58%) when student gave up on a
problem, their final submission compiled, it just didn’t give
the correct result. Much of the time (27%), the student had a
syntax error they were not able to resolve.

GROUP BY clause, or for problems requiring a correlated subquery.
These findings for homework assessments align with observations
from the related studies by Ahadi et al., Taipalus and Perälä, Reisner,
and Welty and Stemple [1, 2, 19, 22, 23].

However, while Ahadi et al. and Taipalus and Perälä play down
the impact of syntax errors, suggesting that they are not a major
issue [1, 2, 21], we find that syntax errors are a non-trivial barrier
stopping many students from completing their homework exer-
cises. This might be due to the fact that a higher percentage of the
homework problems we analyze cover more advanced topics than
the problems analyzed by others. Students studied by Ahadi et al.
and Taipalus and Perälä started out writing simple queries over a
single table, and ended with correlated subqueries. On the other
hand, the students we studied started with joins, and covered topics
like left outer joins, triggers, and stored procedures which were
not covered in any of the other studies. It seems when the queries
get more complex, students are more likely to get stuck and never
make it past their syntax errors (of the 36 final submissions which
were syntax errors, 30 of them were from the last four concepts,
which were not covered at all by prior studies).

6.1 Limitations
We consider only the outputted result, without taking the actual
submitted query into consideration. While syntactic and semantic
errors can be useful indicators of a lack of understanding, there is
still valuable information left within submissions that are marked
correct. Upon manual examination of some of these queries, we
found many students were using more complex SQL features than
what were needed to complete the problem they were working on,
or take a different approach than the question intended. These end
submissions might offer additional insights both to understanding
student misconceptions Similarly, we consider each submission
and its result as a single entity, without comparison to previous
submissions. Considering this context could have also given further
insight into students’ thought processes.

Additionally, data was collected from only one school, potentially
limiting the generalizability of findings. The SQL questions used for
the submissions may not be reflective of other schools’ curricula.
Also, as mentioned earlier, the course covers several database topics

in addition to SQL, therefore student behaviors observed may not
be reflective of curriculum in which SQL is the only domain-specific
language used.

The struggles of students working on small SQL examples for
a university course also may not translate realistically to the trou-
bles that people have in using SQL while working in industry. For
example, we found students were essentially always able to solve
problems containing natural joins, but this may not hold true if
they are working with the larger data sets that are so common in
industry.

Finally, students may have been less likely to finish some ques-
tions not because they were more difficult, but because they were
the last SQL homework assignments for the class, and they might
have decided that it was not worth their time to complete the final
assignment based on the work they had completed so far, and the
grade that they were content with.

6.2 Future Work
There are many available avenues for future work in database
education. This and prior work analyzing student submission data
gives good insight into the type of problems that are difficult for
students when learning to query databases. One next step would be
to conduct talk-aloud interviews with students to understand why
they run into these problems, and the thought processes associated
with them, so that instructors can improve the efficiencywith which
they address these issues.

Further analysis of the student submission data could also be
enlightening. Jadud [11] introduced the idea of an “Error Quotient":
a measurement of how difficult it is for students to overcome errors
while programming, which has been used to give additional insight
into the student problem solving process while programming in
Java [11, 12]. Applying these methods could also give additional
insight into how long students spend stuck on particular errors.

There is also a lack of tooling for database education in relation
to other fields. Tools akin to Guo’s Python tutor [9] could be ex-
tremely helpful in helping students to create a mental model of
how a database engine executes their query, and a something like
Glassmans’ OverCode [8] could have an impact in helping instruc-
tors to diagnose student misconceptions in their classes early and
often, especially when informed by the knowledge from this and
other studies about which errors are most common and difficult to
overcome.

Despite a growing body of literature on improving error mes-
sages for students learning to program [4, 5, 26] very little has
been done to ensure that the error messages generated by database
engines work well for helping students overcome the errors they
face.

Finally, the recent rise in popularity of NoSQL andGraph databases
like MongoDB [14] and Neo4j [15], respectively, present an entirely
new challenge in education, with little to no extant research on
how to best teach students how to use them.

7 Conclusion
Understanding student behavior in database education is still

an under-explored area in Computer Science Education. We take
a step in addressing this issue by analyzing student submissions

Join and
Group
By

Join
and
Where

Join,
Where,
and
Distinct

Table
update,
Simple
Query

Left Outer
Join and
Group By

Delete
with
Subquery

Correlated
Subquery
and Group
By

Triggers Stored
Proce-
dures and
Functions

Syntax Error
(1064)

1313 914 301 403 1227 1346 2726 1842 2982

Undefined Column
(1054)

537 293 156 224 603 453 1531 59 222

Summary Column
not Included in
Group By (1055)

372 78 29 80 412 16 672 2 58

Summary Column
used without
Group By (1140)

274 11 0 90 352 20 492 0 62

Column identifier
is ambiguous
(1052)

222 99 34 109 153 29 340 2 60

Undefined Table
(1146)

128 80 40 68 89 97 324 73 58

Invalid use of ag-
gregating function
(1111)

279 12 0 1 51 275 110 3 4

Derived table must
have own alias
(1248)

136 67 23 18 75 39 185 0 16

Subquery returns
more than 1 row
(1242)

20 27 7 6 67 96 161 16 4

Duplicate Entry
(1062)

50 36 23 34 27 31 94 6 67

Subquery returns
more than 1 col-
umn (1241)

48 21 15 2 20 36 160 25 21

Expression in OR-
DER BY not in SE-
LECT (3065)

8 6 5 0 1 0 257 0 0

Table 5: Number of submissions of most common syntactic errors per concept. Here we see again that the vast majority of
syntactic errors are syntax errors, with the effect being even more pronounced for more compilicated topics. Other interest-
ing patterns include the vast number of undefined column errors when students worked on left outer joins or correlated
subqueries.

to 18 SQL homework problems for an upper-level database course.
Our analysis shows that submissions resulting in syntactic errors
were the majority. We echo prior work that errors relating to GROUP
BY and correlated subqueries appear to be most difficult for students
to overcome, and add the new finding that syntax errors can also
be a non-trivial barrier for students to overcome, especially when
writing more complex SQL queries. Using these categorizations on
homework problems can be useful to instructors to gain a coarse
understanding and address misconceptions before examination.
Overall, this analysis serves as the next push towards new directions
and better understanding in database education.

References
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and Its Application to Predicting Students’ Success. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 401–406. https://doi.org/10.1145/2839509.2844640

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-
titative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’15). ACM, New York, NY,
USA, 201–206. https://doi.org/10.1145/2729094.2742620

[3] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Stu-
dents’ Semantic Mistakes in Writing Seven Different Types of SQL Queries.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 272–277.
https://doi.org/10.1145/2899415.2899464

[4] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 126–131. https:
//doi.org/10.1145/2839509.2844584

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584

[5] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Unexpected Tokens: A Re-
view of Programming Error Messages and Design Guidelines for the Future.
In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’19). ACM, New York, NY, USA, 253–254.
https://doi.org/10.1145/3304221.3325539

[6] Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming with
Interactive Tools: From Integration to Personalization. ACM Trans. Comput. Educ.
9, 4, Article 19 (Jan. 2010), 15 pages. https://doi.org/10.1145/1656255.1656257

[7] Hector Garcia-Molina. 2008. Database systems: the complete book. Pearson
Education India, Chennai, Tamil Nadu, India.

[8] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Trans. Comput.-Hum. Interact. 22, 2, Article 7 (March
2015), 35 pages. https://doi.org/10.1145/2699751

[9] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program Visu-
alization for Cs Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 579–584.
https://doi.org/10.1145/2445196.2445368

[10] Qiang Hao, David H. Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Andrew J.
Ko. 2019. A systematic investigation of replications in computing education
research. ACM Transactions on Computing Education 19, 4, Article 42 (August
2019), 18 pages. https://doi.org/10.1145/3345328

[11] Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (ICER ’06). ACM, New York, NY, USA, 73–84. https://doi.org/
10.1145/1151588.1151600

[12] Matthew C. Jadud and Brian Dorn. 2015. Aggregate Compilation Behavior:
Findings and Implications from 27,698 Users. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research (ICER ’15).
ACM, New York, NY, USA, 131–139. https://doi.org/10.1145/2787622.2787718

[13] A. Mitrovic. 2003. An intelligent SQL tutor on the web. International Journal of
Artificial Intelligence in Education 13, 2-4 (2003), 173–197. cited By 182.

[14] MongoDB, Inc. 2019. MongoDB. https://www.mongodb.com/
[15] Neo4j, Inc. 2019. Neo4j. https://neo4j.com/

[16] Oracle Corporation. 2019. MySQL. https://www.mysql.com/
[17] Stack Overflow. 2019. Stack Overflow Developer Survey 2019. https:

//insights.stackoverflow.com/survey/2019/ [Online; accessed 10-January-2020].
[18] Jay Patel. 2017. The 9 Most In-Demand Programming Languages of

2017. https://www.codingdojo.com/blog/9-most-in-demand-programming-
languages-of-2017 [Online; accessed 10-January-2020].

[19] Phyllis Reisner. 1977. Use of Psychological Experimentation as an Aid to Devel-
opment of a Query Language. IEEE Transactions on Software Engineering SE-3, 3
(May 1977), 218–229. https://doi.org/10.1109/TSE.1977.231131

[20] Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A
Survey and Assessment. ACM Comput. Surv. 13, 1 (March 1981), 13–31. https:
//doi.org/10.1145/356835.356837

[21] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in
SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 198–203. https://doi.org/10.1145/3287324.3287359

[22] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Compli-
cations in SQL Query Formulation. ACM Trans. Comput. Educ. 18, 3, Article 15
(Aug. 2018), 29 pages. https://doi.org/10.1145/3231712

[23] Charles Welty and David W. Stemple. 1981. Human Factors Comparison of a
Procedural and a Nonprocedural Query Language. ACM Trans. Database Syst. 6,
4 (Dec. 1981), 626–649. https://doi.org/10.1145/319628.319656

[24] Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:
Mastery-based Online Problem Solving with Adaptive Scoring and Recom-
mendations Driven by Machine Learning. In 2015 ASEE Annual Conference
& Exposition. ASEE Conferences, Seattle, Washington, 26.1238.1–26.1238.14.
https://peer.asee.org/24575.

[25] Craig Wills. 2020. Analysis of Current and Future Computer Science Needs via
Advertised Faculty Searches for 2020. https://cra.org/analysis-of-current-and-
future-computer-science-needs-via-advertised-faculty-searches-for-2020/ [On-
line; accessed 13-January-2020].

[26] John Wrenn and Shriram Krishnamurthi. 2017. Error Messages Are Classifiers: A
Process to Design and Evaluate Error Messages. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2017). ACM, New York, NY, USA, 134–147.
https://doi.org/10.1145/3133850.3133862

https://doi.org/10.1145/3304221.3325539
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1145/2699751
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3345328
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/2787622.2787718
https://www.mongodb.com/
https://neo4j.com/
https://www.mysql.com/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2017
https://www.codingdojo.com/blog/9-most-in-demand-programming-languages-of-2017
https://doi.org/10.1109/TSE.1977.231131
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3231712
https://doi.org/10.1145/319628.319656
https://cra.org/analysis-of-current-and-future-computer-science-needs-via-advertised-faculty-searches-for-2020/
https://cra.org/analysis-of-current-and-future-computer-science-needs-via-advertised-faculty-searches-for-2020/
https://doi.org/10.1145/3133850.3133862

	Abstract
	1 Introduction
	2 Literature Review
	3 Data Collection
	3.1 Description of Homework Assignments
	3.2 Data Handling
	3.3 A First Look at the Data

	4 Methodology
	5 Results
	6 Discussion
	6.1 Limitations
	6.2 Future Work

	7 Conclusion
	References

