
Proof Blocks: Autogradeable Scaffolding Activities for Learning
to Write Proofs

Seth Poulsen
sethp3@illinois.edu

University of Illinois at Urbana-Champaign
USA

Mahesh Viswanathan
vmahesh@illinois.edu

University of Illinois at Urbana-Champaign
USA

Geoffrey L. Herman
glherman@illinois.edu

University of Illinois at Urbana-Champaign
USA

Matthew West
mwest@illinois.edu

University of Illinois at Urbana-Champaign
USA

ABSTRACT
Proof Blocks is a software tool which enables students to write
proofs by dragging and dropping prewritten proof lines into the
correct order. These proofs can be graded completely automatically,
enabling students to receive rapid feedback on how they are doing
with their proofs. When constructing a problem, the instructor
specifies the dependency graph of the lines of the proof, so that
any correct arrangement of the lines can receive full credit. This
innovation can improve assessment tools by increasing the types
of questions we can ask students about proofs, and can give greater
access to proof knowledge by increasing the amount that students
can learn on their own with the help of a computer.

CCS CONCEPTS
• Mathematics of computing → Discrete mathematics; • So-
cial and professional topics → Computing education; • Ap-
plied computing→ Computer-assisted instruction.

KEYWORDS
discrete mathematics, CS education, automatic grading, proofs
ACM Reference Format:
Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew
West. 2018. Proof Blocks: Autogradeable Scaffolding Activities for Learning
toWrite Proofs. InWoodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Understanding and writing mathematical proofs is one of the crit-
ical, yet difficult skills that students must learn as a part of the
discrete mathematics curriculum. A panel of 21 experts using a
Delphi process agreed that 6 of the 11 most difficult topics in a typ-
ical discrete mathematics course are related to proofs and logic [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Proofs and proof techniques are included by the ACM curricular
guidelines as a core knowledge area that should be understood by
any student obtaining a degree in computer engineering, computer
science, or software engineering [10, 13, 17].

One problem discrete math instructors face is being able to pro-
vide students with rapid feedback on their proof writing skills, since
proofs must be graded by hand by instructors or teaching assis-
tants. With the exception of students who are able to sit down with
instructors during office hours to receive immediate feedback, most
students receive significantly delayed feedback on the correctness
of the proofs which they have constructed while completing their
homework or exams.

In contrast, students working on programming assignments are
able to get constant, continuous feedback from their computer as
they write code. Even though they aren’t able to receive full feed-
back on the correctness of their solutions, there are many correct-
ness properties which they can easily check on their own with the
help of their compiler and both self-written and instructor-provided
automated tests.

What if students were able to receive in-flow automated feedback
on their proofs, just as they are able to with code they write? Pro-
viding students a way to write proofs in such a way that a computer
can give automated feedback can be a huge advantage. For many
students, this will simply be a convenience factor, but for others,
gaining automated feedback can be a huge step in increasing equity
and access in discrete mathematics education. For example, con-
sider students who are unable to make it to office hours to receive
help due to family commitments, or whose university courses are
understaffed. For these and other populations, automated feedback
has the potential to make a huge difference by giving them access
to feedback they wouldn’t have otherwise received.

Another difficulty for instructors is scaffolding students as they
try to make the jump from seeing their instructor write a proof to
writing proofs themselves. To combat this same issue in code writ-
ing, researchers have created new types of learning environments
and problems including Parson’s Problems [14] and block program-
ming languages like Scratch [12] and Blockly [8]. The scaffolding
provided by both Parson’s Problems and block programming lan-
guages have been shown to help students learn more quickly at
the beginning of the learning process [7, 19]. Transitioning from
seeing others write proofs to writing them on their own requires
students to use multiple skills, including writing logical statements

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Poulsen et al.

and analyzing sequences of logical statements to make sure that
each statement is supported by previous ones. Due to the complex-
ity of the task, we believe that students should be given scaffolding
for learning to write mathematical proofs, as with writing code,
and they will receive similar benefits.

In this paper, we present Proof Blocks, a novel user interface
for students to construct mathematical proofs by dragging and
dropping prewritten statements into the correct order (see Figure 1).

Proof Blocks allows students to receive instant feedback on the
proofs they have constructed to accelerate the learning process.
It also provides the necessary scaffolding to help students bridge
the gap between seeing others write proofs and writing proofs
themselves—reminding students to use good practices such as defin-
ing variables before using them and being explicit about the proof
techniques being employed. Proof Blocks also provide an opportu-
nity for better student assessment, by providing questions which
are, on average, more difficult than multiple choice questions given
to students in a typical discrete mathematics course, but easier than
free response proof writing questions [15].

The rest of the paper is organized as follows: we will first discuss
related work, then proceed by explaining the user interface of
Proof Blocks from both the student and instructor perspective. We
will also discuss our experience using Proof Blocks in a discrete
mathematics course with over 400 students, and then explain the
architecture of the autograder and implications for future work.

2 RELATEDWORK
A few other software tools have been created to enable students to
create proofs in the computer in such a way that they can receive
automated feedback. Some use text-based representations, while
others use visual representations of proofs.

Polymorphic Blocks [11] is a novel user interface which presents
propositions as colorful blocks with uniquely shaped connectors
as a signifier of which types of propositions can be connected
into a proof. While the user interface has been shown to engage
students in learning proofs, it supports only propositional logic. The
Incredible Proof Machine [5] guides students through constructing
proofs as graphs. As with Polymorphic Blocks, the user interface is
engaging, but the formality of the system limits the topics which
can be effectively covered.

Jape [4] is a “Proof calculator,” which guides students through
the process of constructing formal proofs in mathematical notation
with the help of the computer. While Jape can allow students to
construct proofs in arbitrary logics, it requires the instructor to
implement these logics in its own custom programming language
before students can use them to construct proofs.

MathsTiles [3] is a block-based programming interface for con-
structing proofs for the Isabelle/HOL proof assistant. In theory,
having an open-ended environment where students could construct
arbitrarily complex proofs seems like it could be a huge advantage.
However, in user studies, the authors found that students only had
a chance at being successful while using MathsTiles if they were
provided only a small instructor-procured subset of blocks, namely,
those needed to complete the problem at hand.

In reviewing the design of existing tools for computerized proofs
it is clear that there is a tension between two desirable properties:

ease of use for beginners, and ability to handle complex proofs.
The tools which have an elegant, easy to understand interface
(Polymorphic Blocks, The Incredible Proof Machine) only cover
formal (and in some cases, simple) logics, limiting their usability
for discrete mathematics courses where students write informal
proofs on a variety of topics from graph theory to number theory.
The tools which can handle an arbitrary complexity of proofs are
very complex and thus difficult and time consuming for students
and instructors to use, especially at the same time as trying to learn
to write proofs.

Proof Blocks solves this problem by allowing informally written
proofs to be formally graded, making the tool both easy to use,
and able to cover topics of all level of complexity, including but
not limited to number theory, properties of functions, cardinality,
graph theory, Big-O, and combinatorics.

3 COURSE CONTEXT
Proof Blocks has been used by hundreds of students in the discrete
mathematics course at a large public research university in the
United States. At this university, the discrete mathematics course
is taught every semester (including during the summer) and is
taken by hundreds of students each semester, across multiple sec-
tions. Most students are freshmen, and take the course as part of
their computer science major, computer science minor, or computer
engineering major. The listed prerequisites for the course are in-
troductory programming and introductory calculus. The course is
designed to prepare students for the theory track in the department
and usually covers logic, proofs, functions, cardinality, graphs and
trees, induction, recursion, number theory, probability, basic algo-
rithm analysis, and sometimes additional topics as time permits.
Though taught in the computer science department, it is solely a
theory class, with no programming assignments.

In Fall 2020, the course was held completely online due to the
COVID-19 pandemic. The course was split into 3 sections, each with
a different instructor, for a total of over 400 students. Each week
students watched a lecture video recorded by one of the instruc-
tors, and then spent class time working together in small groups
on a worksheet over video conferencing software, with teaching
assistants present to assist. They were then assigned homework.
At the beginning of the next week, students took a short exam,
on the material covered the previous week. Some weeks, the stu-
dents were also given a practice exam to assist in studying. For
the final exam, students were given the opportunity to retake any
three of the exams. Students took their exams using PrairieLern,
an online open-source homework and exam platform [20]. Exams
typically consisted of three to five multiple choice or fill in the blank
questions, one or two Proof Blocks questions, and one or two free
response written proofs. Especially for a course of this size, Proof
Blocks’ fully automated grading was also a big advantage in saving
course staff time which could be reallocated in other ways. In total,
students were given 10 Proof Blocks questions on exams and 3 on
practice exams. Students received immediate correctness feedback
on each Proof Blocks question on their exams and were given up
to three attempts at each question, with a decreasing number of
points awarded depending on the number of attempts needed.

Proof Blocks: Autogradeable Scaffolding Activities for Learning to Write Proofs Woodstock ’18, June 03–05, 2018, Woodstock, NY

1

2

3

4

5

6

Figure 1: Example of the Proof Blocks user interface used by students. Individual lines of the proof start out shuffled in the
light-blue starting zone, and students attempt to drag and drop them into the correct order in the yellow target zone. The
instructor wrote the problem with 1, 2, 3, 4, 5, 6 as the intended solution, but the Proof Blocks autograder will also accept any
other correct solution as determined by the dependency graph shown Figure 2. For example, both 1, 2, 5, 4, 3, 6 and 1, 2, 4, 5, 3,
6 would also be accepted as correct solutions.

4 USER INTERFACE
Proof Blocks is built in to PrairieLearn. Both the student and teacher
user interfaces for creating and using Proof Blocks problems are
user friendly, and can be used with almost no training. In an anony-
mous survey given to our students, 46 out of 51 students responded
positively to the statement “The proof blocks user interface was
easy to use,” with the remaining 5 responding neutrally. Addition-
ally, over two thirds of respondents agreed with the statements
“Proof Blocks accurately represent my understanding of how to
write proofs,” and “Proof Blocks would be a good tool for practicing
writing proofs.” For more detailed survey results, see [15].

4.1 Student Interface
Figure 1 shows an example of the Proof Blocks user interface seen
by students as they work through Proof Blocks problems. Individual
lines of the proof start out shuffled in the light-blue starting zone,

and students attempt to drag and drop them into the correct order in
the yellow target zone. Students were able to successfully complete
proofs using Proof Blocks after completing a lecture, worksheet,
and homework about proofs, with no training specifically in how
to use the interface.

Figure 3 shows an example of feedback given to students working
on Proof Blocks problems. This is the feedback that a student would
receive if they were to select “Save & Grade” after having put their
Proof Blocks into the state shown in Figure 1. To avoid giving
students so much information that we are not actually testing their
knowledge, they are only told at which line their proof fails and
some possible reasons why, not the exact reason why or what the
solution is. One area of future research is to iterate on what kind of
feedback is best for students to receive when using Proof Blocks as
a tool for learning to write proofs.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Poulsen et al.

1

2

3

45

6

Figure 2: The dependency graph of the statements in the
proof shown in Figure 1. The Proof Blocks grader will ac-
cept any topological sort of this directed acyclic graph as a
correct solution.

4.2 Instructor Interface
In PrairieLearn, each question written by the instructor will include
(1) an HTML file defining what the students will see, and (2) a
JSON file containing metadata such as the question topic, type,
grading options, and author. The HTML file may use custom HTML
elements defined by PrairieLearn for writing homework and exam
questions. The HTML is then processed on the backend into HTML,
CSS, and JavaScript before being delivered to the student’s browser.

Figure 4 shows the instructor-written HTML code that generates
the Proof Blocks exercise shown in Figure 1. The HTML elements
that are prefixed with “pl” have special meaning to PrairieLearn,
which processes them on the backend before sending the HTML to
the client. The pl-question-panel element notifies PrairieLearn
of the beginning of a new question. The pl-drag-drop signals to
PrairieLearn to create the actual Proof Blocks user interface, and
each pl-answer element inside of it defines a draggable line of the
proof.

Critically, the instructor writing the problem must specify which
lines of the proof must precede each other line. Though seemingly
a small detail, it is what makes Proof Blocks such a powerful tool,
since it allows instructors to write proofs with arbitrary English
language statements. This overcomes the proof complexity con-
straints of earlier student computer proof systems, and makes it so
that students can construct proofs that a computer can grade at any
level of complexity. The proof dependencies are declared using the
“depends” attribute. For example, the proof graph for the problem
shown in Figure 4 is given in Figure 2.

The instructors of the course were able to create new Proof
Blocks questions without any special training by simply looking at
those already created by the authors, only asking a few questions
for clarification about the configuration options, which could now
be answered by looking at the documentation. An instructor can
choose for all of the given lines to be required, or can add in distrac-
tor lines which are not part of the proof. In our discrete mathematics
course, we used test questions both with and without distractor

lines. Whether or not having distractor lines in the problem leads to
better assessment or learning outcomes is an open question which
we leave for future work.

5 BEST PRACTICES FOR QUESTION
WRITING

Our experience using Proof Blocks with over 400 students this
semester led us to a few best practices in having Proof Blocks prob-
lems work well for students.

The principal cause for an erroneous Proof Blocks question is
because the instructor failed to recognize a possible rearrangement
of the proof lines that is logically consistent. This results in a cor-
rect student response being incorrectly marked as faulty by the
autograder. Unfortunately, it is easy to make such mistakes when
designing a Proof Blocks question. These can be avoided if the in-
structor is aware of the main reasons this arises, which we outline
below. In addition, we recommend that the instructor ask another
member of the course staff who did not design the question, to
solve the problem in different ways without looking at the source
code. In our experience, these steps help catch all such mistakes.

The most common cause for errors is when the instructor identi-
fies more dependencies between the proof lines than actually exist.
For example an instructor may code up a problem in a manner
which specifies to the autograder that each line in the proof de-
pends on the line before it. Such strong dependencies are rarely
demanded in any proof. While this is a simple scenario where ad-
ditional dependencies have been identified, other cases are more
subtle. They often arise because experienced mathematicians follow
stylistic norms in addition to logical dependencies when structuring
their proofs. These are so ingrained in a practicing mathematician,
that stylistic norms inadvertently seep in as logical dependencies
when coding up a problem. For example, one often structures proof
with subgoals, with the proof of a new subgoal begun only after the
proof of the previous subgoal has been finished. A classical example
in a discrete mathematics class is where students are asked to prove
a statement using induction where the proof of the induction step
follows a complete proof of the base case. However, often there
is no logical dependence between the statements in the subproof
of each case. From a logical perspective, the proof statements for
each case can be interleaved in any manner. Of course, emphasizing
stylistic norms is just as important a learning objective, but in that
case instructors should be encouraged to spell this goal out in the
problem statement. To avoid such mistakes, after coding a Proof
Blocks question, we encourage instructors to examine the depen-
dencies of each line in the coded problem in isolation, without the
large proof context.

The second common cause for errors arises in proofs that contain
many algebraic manipulation steps. In informal proof writing, it
is often acceptable to skip intermediate steps of algebraic manipu-
lation. Coding a question in a manner that demands all the steps
leads to student complaints about the autograder. There are two
ways to address this problem. One is to write multiple algebraic
simplification steps in a single proof statement in the problem. The
second, and probably the best, is to avoid having any distractors in
the problem, and notify the student that all blocks should be used
to construct a correct proof.

Proof Blocks: Autogradeable Scaffolding Activities for Learning to Write Proofs Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving students so much infor-
mation that we are not actually testing their knowledge, they are only told at which line their proof fails, not the reason why
or what the solution is. One area of future research is to investigate what kind of feedback is best for students to recieve when
using Proof Blocks as a tool for learning to write proofs.

<pl-question-panel>
<p>Recall that a positive integer n ($n \geq 1$) is said to be a perfect square if there is a positive integer k such
that $n = k^2$. Drag and drop a subset of the blocks below to create a proof of the following statement.
Note, not all blocks maybe needed in the proof.</p>
<p><center>If $3\cdot 2^{172}+1$ is a perfect square then $3\cdot 2^{172}+173$ is not a perfect

square.</center></p>
</pl-question-panel>

<pl-order-blocks answers-name="squares" source-blocks-order="random" grading-method="dag" solution-placement="bottom">
<pl-answer correct="true" id="1" depends="">Assume that $3\cdot 2^{172}+1$ is a perfect square.</pl-answer>
<pl-answer correct="true" id="2" depends="1">There is a positive integer k such that $3\cdot 2^{172} + 1 = k^2$.</pl-answer>
<pl-answer correct="true" id="3" depends="2">Since $3\cdot 2^{172} + 1 > 2^{172} = (2^{86})^2 > (172)^2$, we have $k > 172$.

</pl-answer>
<pl-answer correct="true" id="4" depends="2">We have, $k^2 = 3\cdot 2^{172} + 1 < 3\cdot 2^{172} + 173$.</pl-answer>

<pl-answer correct="true" id="5" depends="3">Also, $3\cdot 2^{172} + 173 = (3\cdot 2^{172} + 1) + 172 < k^2 + k$.

Further $k^2 + k < (k+1)^2$.</pl-answer>
<pl-answer correct="true" id="6" depends="4,5">Since $3\cdot 2^{172} + 173$ is strictly between two successive

perfect squares k^2 and $(k+1)^2$, it cannot be a perfect square.</pl-answer>

<!-- Distractors -->
<pl-answer correct="false">$3\cdot 2^{172} + 1$ is even.</pl-answer>
<pl-answer correct="false">$3\cdot 2^{172} + 173$ is even.</pl-answer>
<pl-answer correct="false">Since $3\cdot 2^{172} + 1$ and $3\cdot 2^{172} + 173$ are both even, one of them cannot be a

perfect square.</pl-answer>
</pl-order-blocks>

Figure 4: The instructor-written HTML code that generates the Proof Blocks exercise shown in 1. The HTML elements that
are prefixed with “pl” have special meaning to PrairieLearn, which processes them on the backend before sending the HTML
to the client. The “depends” property on each “pl-answer” element is used to declare the dependency between statements in
the proof structure.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Poulsen et al.

The last cause for an error could be distractors. When designing
a question, it is useful to remember that none of the distractors
should be part of any correct proof. A common mistake is to have
distractors that are superfluous to the correct proof; this is a problem
because we can write logically correct proofs that have additional
statements that do not contribute to the end goal. Thus, it is impor-
tant to ensure that adding any distractor would result in a logically
inconsistent argument. One simple way to ensure this is to have
each distractor (on its own) be a logically inconsistent statement.
Even though this might seem like an easy distractor for a student
to avoid, in practice we have found that students are nonetheless
confounded by such distractors.

6 AUTOGRADER
The autograder is currently built in to PrairieLearn, but the core
algorithm is about 70 lines of Python code that could be made to
work with an alternative frontend, or reimplemented in any other
language.

While creating the tool, we recognized that it would be a poor
student experience if the student was expected to place the lines of
the proof in the exact order which the instructor first wrote them,
because inmanymathematical proofs, certain lines can be permuted
without affecting the correctness of the proof. It would also be a
poor user experience for the instructor if they had to explicitly
declare every possible correct answer to each question. This led us
to our current grading scheme, which is based on the dependency
graph of the lines in the proof, which is a directed acyclic graph
(DAG). The instructor simply declares the dependency graph of
statements in the proof, and then the grader will accept any correct
permutation of the lines.

In the basic case, where a proof has no subproofs like the example
in Figure 1, checking if a proof is correct is equivalent to checking
if the student ordering of the lines is a topological sort of the DAG.

6.1 Subproofs
Even in an introductory discrete mathematics course, an instructor
may want to use proofs that have cases. For example, using cases to
prove an “or” statement, or proof by induction. Here each subproof
is a connected subgraph of the entire proof graph. In such cases,
checking for topological sorting of the proof DAG is insufficient, be-
cause this would allow for intermixing of statements from separate
subproofs in a nonsensical fashion. A correct proof is a topological
sort of the lines of the proof with the added condition that the lines
of each subproof must be listed contiguously. Therefore, there is an
extra check in the grader which ensures that once a given subproof
is started, it is finished before any lines from a parallel subproof
appear.

To write a question with a subproof, the instructor labels each of
the pl-answerHTML elements which represent a line in a subproof
with a unique string identifier for that subproof, specified using
the subproof attribute. For more details and examples of problems
with subproofs, see the Proof Blocks documentation [1]. As noted
in Section 5, it is important to note that subproofs declared only
for stylistic, and not logical, reasons can be misleading for student
unless they are explicitly notified of the style which they are to
follow.

7 EVALUATION
Using data from hundreds of student exams from fall 2020, we have
shown that Proof Blocks problems are in fact easier than written
proofs, which are often very difficult. We have also shown that
as test questions, Proof Blocks problems provide about as much
information about student knowledge as written proof problems
do. An anonymous survey given to these students showed that
students felt that Proof Blocks problems accurately represented
their ability to write proofs, and that the user interface was easy to
use. Full details of this evaluation can be seen in [15].

8 ADOPTING PROOF BLOCKS
To use Proof Blocks with your students, start by following the
onboarding instructions for PrairieLearn [2]. Once familiar with
the basic workings of PrairieLearn, follow the documentation for
writing Proof Blocks questions [1]. More example problems can be
found in the documentation and example courses. PrairieLearn is in
the process of integrating with Learning Tools Interoperability [16]
to enable easier sharing of student data across learning platforms.
Feel free to reach out to the authors with any questions, or about
the possibility of adding Proof Blocks support on other platforms.

9 LIMITATIONS
The key limitation of Proof Blocks is that it restricts what students
can do, only allowing them to place prewritten lines into their proof
rather than allowing them to write whatever they want. As with
Parson’s Problems and block based programming languages, we
expect that there is a certain skill level at which Proof Blocks will
become a hindrance rather than a help to students, but this is of
course expected for all forms of education scaffolding. Similarly,
we believe that Proof Blocks will can be a huge help for students
who are just getting started in learning to write proofs. Another
limitation is that proofs will be graded correctly only as long as the
instructor correctly codes the question—but this is really no worse
than most other types of exam questions given to students. Finally,
Proof Blocks is currently only usable within the PrairieLearn. On-
going efforts to improve interoperability between PrairieLearn and
other learning platforms will help ease adoption.

10 FUTUREWORK AND IMPLICATIONS
The versatility of the Proof Blocks platform makes it ideally suited
for many future avenues of research. Next, we would like to enable
automatic generation of Proof Blocks problems so that students can
have essentially unlimited practice. We will also want to research
a way to predict the difficulty of a given generated problem, so
students can be guided through questions of varying difficulty as
the learn, and for fairness on assessments.

As noted, Proof Blocks are a good way to bridge the gap between
students learning to read and write proofs. To give further support
to students as they learn to write proofs, we can try variations on
Proof Blocks. For example, we could have students drag and drop
lines of a proof which are mostly prewritten, but have some blanks
for the students to fill in, much as Weinman et al. have done with
their “Faded Parson’s Problems” [18]

Proof Blocks: Autogradeable Scaffolding Activities for Learning to Write Proofs Woodstock ’18, June 03–05, 2018, Woodstock, NY

Proof Blocks can increase access to proof knowledge by helping
students gain more rapid feedback on the proofs they write. Ad-
ditionaly, it can improve assessment tools by increasing the types
and difficulty levels of questions we can ask students about proofs,
and save many hours of instructor grading time which can be real-
located to office hours or other effective means of helping students
[15]. There has been some evidence that mathematics is acting as a
gatekeeper to learning programming, and that it doesn’t actually
predict performance in software developers [6]. Furthermore, many
people going into software development study curricula that in-
volve less math than a standard computer science curricula. Proof
Blocks can also provide a solution in this case: rather than teaching
less mathematics, Proof Blocks provides a middle ground. Students
can be introduced to logical thinking and proof writing in a gentler
way, potentially reducing the gatekeeping of mathematics while
helping students learn the content.

REFERENCES
[1] 2021. pl-order-blocks Documentation. https://prairielearn.readthedocs.io/en/

latest/elements/#pl-order-blocks-element
[2] 2021. PrairieLearn Documentation. https://prairielearn.readthedocs.io/en/latest/
[3] William Billingsley and Peter Robinson. 2007. Student proof exercises usingMath-

sTiles and Isabelle/HOL in an intelligent book. Journal of Automated Reasoning
39, 2 (2007), 181–218.

[4] Richard Bornat and Bernard Sufrin. 1997. Jape: A calculator for animating proof-
on-paper. In International Conference on Automated Deduction. Springer, 412–415.

[5] JoachimBreitner. 2016. Visual theorem provingwith the Incredible ProofMachine.
In International Conference on Interactive Theorem Proving. Springer, 123–139.

[6] Nathan L Ensmenger. 2012. The computer boys take over: Computers, programmers,
and the politics of technical expertise. Mit Press.

[7] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20–29.

[8] N. Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). 49–50. https://doi.org/10.1109/BLOCKS.
2015.7369000

[9] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C Loui, and Craig Zilles. 2008. Identifying important and difficult
concepts in introductory computing courses using a delphi process. In Proceedings
of the 39th SIGCSE technical symposium on Computer science education. 256–260.

[10] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[11] Sorin Lerner, Stephen R Foster, and William G Griswold. 2015. Polymorphic
blocks: Formalism-inspired UI for structured connectors. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. 3063–3072.

[12] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15.

[13] The Joint Task Force on Computing Curricula. 2014. Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering. Technical Report. New
York, NY, USA.

[14] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Effective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[15] Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West.
2021. Evaluating Proof Blocks Problems as Exam Questions. In Proceedings of the
2021 ACM Conference on International Computing Education Research.

[16] Charles Severance, Ted Hanss, and Josepth Hardin. 2010. Ims learning tools
interoperability: Enabling a mash-up approach to teaching and learning tools.
Technology, Instruction, Cognition and Learning 7, 3-4 (2010), 245–262.

[17] Association for Computing Machinery (ACM) The Joint Task Force on Com-
puting Curricula and IEEE Computer Society. 2016. Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering. Technical Report. New
York, NY, USA.

[18] Nathaniel Weinman, Armando Fox, and Marti Hearst. 2020. Exploring challeng-
ing variations of parsons problems. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 1349–1349.

[19] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th international conference on interaction design and children. 199–208.

[20] Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:
Mastery-based Online Problem Solving with Adaptive Scoring and Recom-
mendations Driven by Machine Learning. In 2015 ASEE Annual Conference
& Exposition. ASEE Conferences, Seattle, Washington, 26.1238.1–26.1238.14.
https://peer.asee.org/24575.

https://prairielearn.readthedocs.io/en/latest/elements/#pl-order-blocks-element
https://prairielearn.readthedocs.io/en/latest/elements/#pl-order-blocks-element
https://prairielearn.readthedocs.io/en/latest/
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1109/BLOCKS.2015.7369000

	Abstract
	1 Introduction
	2 Related Work
	3 Course Context
	4 User Interface
	4.1 Student Interface
	4.2 Instructor Interface

	5 Best Practices For Question Writing
	6 Autograder
	6.1 Subproofs

	7 Evaluation
	8 Adopting Proof Blocks
	9 Limitations
	10 Future Work and implications
	References

