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ABSTRACT

A common thread through education research is asking questions
about how treatments applied to students affect their education,
career, and other outcomes. For example: Will being taught in a
certain way increase students’ learning? Will taking a computer
science course lead to higher job satisfaction in the future? Are
remedial programs serving their intended purpose?

The most robust way to establish the causal effects of treatments
is to perform randomized controlled trials. However, in the context
of education, it would frequently be unethical or logistically impos-
sible to simply assign students to take a certain class or participate
in a certain program for the purpose of research.

As a result, we often take advantage of natural experiments
or quasi-experiments. In such situations, the traditional method
of analysis is to look at the correlation between the treatment
and outcome variables. However, this doesn’t tell us whether the
outcome was caused by the treatment, as there are almost always
substantial selection biases or confounding variables.

In the past few decades, advanced statistical methods have been
developed to analyze the assignment of subjects to treatments as if
it was random, allowing us to deduce the causal effect of the treat-
ment. Such methods include difference-in-differences, instrumental
variables, and regression discontinuity design.

In this paper we argue that these methods have been underused
in computing education research. To encourage their increased
use, we describe the methods and present selected examples of
education studies where they have allowed researchers to bridge
the gap from correlation to causation.
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1 INTRODUCTION

Randomized control trials (RCTs) are considered the gold standard
for experimental design. In an RCT, individuals in the sample popu-
lation are randomly assigned to groups, either treatment groups or
control groups that receive either no treatment or a placebo treat-
ment that is expected to have minimal effect. Through randomized
assignment, confounding factors, characteristics of members of the
population (unrelated to the treatments) that potentially affect the
property of interest, can be expected to be uniformly distributed
across the treatments when sample populations are sufficiently
large. This prevents treatment assignment from biasing measure-
ments of the property of interest, so that we can assume a causal
relationship between the treatments and the observed outcomes
for the treated groups.

In computing education research (CER), however, like many hu-
man sciences, running RCTs can be too expensive, too difficult, or
too limiting. When evaluated in the context of a reasonable baseline
(e.g., current best known practices), the impact resulting from a par-
ticular treatment may only be reliably measurable after many tens
or hundreds of hours of engagement by the learners and months
(or even years) of their lives. Running in-vitro laboratory studies
at this scale, where a researcher can control all of the variables
including treatment assignment, is generally cost and effort pro-
hibitive; feasible shorter studies may have effect sizes too small to
measure or lack ecological validity, in that student behavior in a
short laboratory study might not predict their behavior in the real
world.

As a result, a significant amount of CER is performed in-situ, in
the computing courses and activities in which students engage as
part of their normal lives. In these contexts, there are often barri-
ers that prevent the researcher from controlling the assignment
of subjects to treatments, making these quasi-experimental studies.
These barriers can be practical, ethical, or legal. Most colleges and
universities (as well as their Institutional Review Boards) have the
expectation that students within a single section of a course are
treated fairly and equitably; this prevents faculty from requiring a
random half of the students to write essays in place of half of their
programming assignments, for example. Even if it were permissi-
ble, some treatments (e.g., comparing traditional lecture vs. a peer
instruction lecture using clickers) would be impossible when all
students are attending the same lecture.

A commonly used strategy, therefore, is to apply different treat-
ments to different offerings of a class, either different sections in
the same semester or in different semesters. Different sections in
the same semester are subject to either confounding variables im-
pacting the assignment of treatment (e.g., students that register for
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classes early are more organized in general and are disproportion-
ately represented in sections at preferred times) or confounding
treatments (e.g., two lectures at the same time taught by differ-
ent faculty), or both. Comparing treatments in different semesters
is subject to either abrupt (e.g., Fall vs. Spring offerings of early
courses having significantly different proportion of students with
prior programming experience) or subtle (e.g., institutional admis-
sion priorities/policies changing over time) population variations.

The problem with quasi-experimental studies and natural experi-
ments, observational studies where the researcher was not involved
in constructing the experiment in any way, is that one needs to be
very careful about inferring causality when a treatment is correlated
to a property of interest. It could be that some other characteristic of
the population causally affected group assignment and also causally
affected the property of interest. Even when great effort has been
taken to show that treatment groups are similar, it cannot be proven
that some other, unmeasured variable isn’t the confounding factor.

Because many phenomena in human sciences can only be studied
through natural experiments and quasi-experiments, researchers
have developed a number of statistical techniques to infer causality
in these contexts. These techniques, however, have rarely been
used in CER and are notably absent from the recent Cambridge
Handbook of Computing Education Research [1]. We believe that
they are likely being underused in CER because they are not yet
well known by the community. As such, the contribution of this
paper is to describe three of the most prominent techniques and
explain their utility in the context of educational studies.

2 REGRESSION DISCONTINUITY DESIGN
(RDD)

Regression discontinuity designs (RDD) [10] are useful in the case
where there is a threshold that decides whether an intervention is
applied. In a classic example, we might be interested in whether
merit-based scholarships for college freshmen improve student
degree outcomes. To understand the effect of the scholarships, we
cannot simply compare the outcomes of those students who were
awarded one to those who were not. This would be invalid, because
students who do well in high-school are likely to both be awarded
scholarships and to do well at college.

To use RDD for this situation, we instead focus our attention
on the group of students who were just below the threshold for
being awarded a scholarship and compare them to the group of
students who were just above the threshold. It is often reasonable
to assume that these groups are very similar in every way except
the scholarship, so differences in group outcomes can be causally
attributed to the intervention of giving the scholarship.

In practice, we can use alocal linear regression near the threshold,
where we fit one linear model for students just below the threshold
and a second model above, as shown in Figure 1. Comparing the
predictions of the two models at the threshold then gives a good
estimate of the effect size. The same idea can also be used with
more complex parametric models, such as fitting two quadratics on
either side of the threshold and again comparing predictions at the
threshold.

For an overview of RDD and a guide to its use in practice we
refer to the excellent paper of Lee and Lemieux [10].
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Figure 1: Example data for a Regression Discontinuity De-
sign

2.1 Case study: RDD for remedial programs

An excellent example of the use of regression discontinuity design is
the work of Jacob and Lefgren [8], who used it to analyze the impact
of remedial programs in K-12 education. Among other questions,
they were interested in the effectiveness of “grade retention”, where
a student is required to repeat a grade (year) of school (that is, be
“retained”) if they have not demonstrated sufficient achievement.
Prior to their work, many studies had found that students who
had been retained in a grade scored lower than similar students
who were not retained [6] and were more likely to drop out of
school [14].

However, these prior studies were correlational and, although
they attempted to compare retained students to similar non-retained
counterparts, it is likely that there were unobserved characteristics
that both increased the likelihood that a student was retained and
also made it more likely that they would under-perform or drop
out.

To overcome this limitation of prior studies, Jacob and Lefgren
[8] took advantage of a natural experiment that occurred in the
Chicago Public School (CPS) system in 1996. Prior to 1996, students
in the CPS system moved on to the next grade each year regardless
of their achievement level. Starting in 1996, CPS retained students
and forced them to repeat a grade if they did not meet certain preset
levels of performance in standardized tests.

This new policy introduced a clear discontinuity, where stu-
dents below the performance threshold were retained and students
above the threshold moved on. However, it is reasonable to assume
that students just below the threshold were essentially identical to
students just above. More precisely, we assume that student charac-
teristics are continuous across the threshold, so that differences in
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outcomes between the two sides of the threshold are caused by the
grade retention policy.

By comparing these two groups of students in an RDD analysis,
Jacob and Lefgren [8] showed that, in contrast to previous studies,
grade retention had no negative impact on third-grade students
and may have slightly helped them, while it had a mixed impact on
sixth-grade students with no impact on math and a negative impact
on reading. These results suggest that previous studies had substan-
tially over-estimated the negative impacts of grade retention, likely
because of unobserved confounding variables.

2.2 Prospects for RDD in CER

Regression discontinuity designs are ideal in cases where a treat-
ment is applied or not based on a somewhat arbitrary threshold in a
continuous measurement, so that students just below the threshold
(who receive the treatment) are essentially the same as those just
above (who do not). Anytime this occurs, RDD allows us to make
strong causal inferences about the effect of the treatment.

In computing education research, there are many questions
where RDD could be used to help determine causal impact. For ex-
ample: (1) Does streaming incoming students into a no-programming-
background introductory course help them in subsequent courses?
(2) Does giving a high-performing student a non-"A” grade increase
the chance they will change majors? (3) Do one-on-one tutoring
sessions for low-performing students help them pass the class? In
all of these cases it is the causal effects that we are interested in.

3 DIFFERENCE-IN-DIFFERENCES (DID)

Another method to study the mean effect of an intervention from
natural experiments or quasi-experiments is Difference-in-Differences
(DiD). For example, we might want to know if a dedicated segmenta-
tion fault lecture improves students’ ability to write segmentation-
fault-free code by the end of the semester. We cannot derive any
conclusion from pre-post tests over the semester on the group of
students that received the intervention (the dedicated lecture) be-
cause the timespan between tests is too long and students have
plenty of time to improve, even without the intervention. We would
need another group of students who do not receive the intervention
for comparison (conceptually, a control group). However, randomly
assigning students to such groups within a semester is often infea-
sible, so this is not a random or matched control group.

DiD allows us to derive a mean effect of the intervention in this
case by collecting a pre-semester measurement 1 and post-semester
measurement 2 of two groups, one without the intervention (Group
A) and one with it (Group B). See Figure 2 for an illustration. For
each group we calculate the difference between measurements 1
and 2. For Group A (the “control” group), this difference is the
expected improvement without the intervention, while for Group B
the difference includes both the normal expected improvement plus
the effect of the intervention. To isolate the effect of the intervention,
we thus subtract the Group A difference from the Group B difference,
giving a difference in differences as the effect estimate.

The central assumption of the DiD method is called the parallel
trend assumption. For DiD to be useful, it must be assumed that in
the absence of the intervention, the groups will follow the same
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Figure 2: Illustration of an estimation carried out by
Difference-in-Differences.

trend across measurements of the quantity of interest. Any diver-
gence from this trend can then be attributed to the intervention. In
the above example, the parallel trend assumption predicts that the
two group of students will have the same improvements over the
semester in the absence of the intervention. In order to make such a
claim convincing, it would be desirable to have the same instructor
teach the course in the same semester of two consecutive years and
keep everything else in the course the same but the intervention.

3.1 Case study: DiD for cheating advantage

While DiD is often used in situations with multiple measurements
across the time domain, it can also be used when measurements
are made across other domains as long as the parallel trend as-
sumption is believed to hold. An example of such an application
is Chen, West and Zilles’s work on analyzing how different de-
grees of randomization affect the amount of benefit that cheaters
can gain on asynchronous exams (i.e., when students are allowed
to choose when they take an exam in a given time window) [5].
Here the multiple measurements were made on assessments that
represented different degrees of randomization. Prior to the work,
randomization was a recommended technique to safeguard asyn-
chronous exams [12], but it was unclear how much randomization
is necessary.

Chen, West and Zilles collected data from asynchronous exams
comprised of randomly-parameterizing questions drawn from the
homework as well as “hidden” problems only present on the exams.
The questions fell into four categories: (1) hidden questions where
every student received the same question, (2) homework questions
where every student received the same question, (3) homework
questions drawn from pools of two questions, and (4) homework
questions drawn from pools of four questions [5]. They applied
DiD to compare the performance of cheaters and non-cheaters on
these four categories of questions and found that, when students’
performance on questions in (1) was used as the baseline differ-
ence between cheaters and non-cheaters, cheaters had a significant
advantage on questions in (2) but an insignificant advantage on
questions in (3) and (4). These results suggest that randomization
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is indeed necessary for asynchronous exams and provide empirical
evidence for the minimum amount of randomization required.

3.2 Prospects for DiD in CER

Difference-in-differences is a candidate method to consider in situ-
ations where randomized controlled trials are out of the question.
It is best suited in cases where we are interested in the relationship
between multiple measurements, e.g., whether a particular inter-
vention improves students’ performance for a period of time. The
multiple measurements do not have to be across the time domain,
but could be in different assessment settings instead. As long as the
parallel trend assumption holds with reasonable confidence, DiD
can be used to study the causal effects of interventions.

The use of DiD in computing education would give better es-
timates of the causal effect of interventions such as (1) the intro-
duction of a block language for the first few weeks in CS1 before
a switch to a typical programming language, (2) the teaching of
spatial abilities before the regular course contents, and (3) the in-
troduction of programming games as part of the course.

For a gentle overview of DiD and instructions on how to carry
out the computation of the mean effect and its confidence interval,
we recommend Agrist and Pishke’s books [2, 3].

4 INSTRUMENTAL VARIABLES (IV)

Another way to estimate a causal effect from a dataset that was not
the result of a a randomized controlled trial is by using a technique
called instrumental variables estimation. Using this technique re-
quires access to another variable, called the instrumental variable,
in addition to the treatment and outcome variables. Ideally, the
instrumental variable is chosen so that it cannot have an effect
on the outcome variable except through its effect on the treatment
variable. Assuming this is the case, the instrumental variable, once
added to the regression, allows an estimation of the causal effect of
the treatment variable on the outcome variable.

For example, suppose researchers wanted to understand the
causal effect of alcohol consumption on the number of car crashes.
Finding the correlation between the two will not reveal the causal
effect, as there could be confounding factors, such as income, that
effect both alcohol consumption and car crashes—and car crashes
themselves may cause more alcohol consumption. On the other
hand, the tax rate on alcohol may be used as an instrumental vari-
able because it has no effect on car crashes except through its in-
fluence on alcohol consumption. Thus, we can estimate the causal
effect of alcohol consumption on car crashes by examining the
relationship between alcohol tax rate and car crashes.

Instrumental variables have been used to estimate effects of
various treatments in education [4, 9, 13].

4.1 Case study: IV for more math classes

We will look more in depth at an example of how instrumental
variables can be used to estimate the effect that taking an additional
math class in high school has on college and career success.

In the 1980s, while Denmark was in the process of revamping
its high school curriculum, there was a pilot program where stu-
dents were given more flexibility in their course options, and were
given the option to take advanced math combined with physics or

us

chemistry, instead of being required to take advanced math with
physics. Due to this additional curricular options, about one-third
more students decided to take advanced math [9].

Joensen and Nielsen [9] saw this as an opportunity to use an
instrumental variables approach to estimate the causal effect that
the additional math class had on the students’ college and career
success. Their instrumental variable was if a student’s school had
joined the pilot program after the student had started attending.
A case can be made that the instrumental variable meets the re-
quirement of not affecting the outcome variable (except through
the treatment variable) because the students couldn’t have chosen
the school for the opportunity to take more math—so their choice
to attend that school is not likely to be correlated with other factors
that influence their college outcomes, such as socioeconomic status
and parental attitudes. Joensen and Nielsen also added additional
controls to account for students’ existing knowledge. The fact that
schools self-selected to be a part of the pilot program introduces
some school-level selection bias to the experiment, but they con-
trolled for this using the average GPA of students at the school.
They conclude that taking additional math and chemistry in high
school caused students to complete a higher level of education and
have higher earnings later on.

There have been multiple studies on the question of the effects
of additional math in high school using various methods (including
a Regression Discontinuity Design, a method discussed in Section
2), forming a consensus that additional math in high school causes
higher college enrollment and wages [13].

On the other hand, we have much less of an idea about the
effect that taking computer science has on students’ college and
career success and satisfaction. A few studies have examined the
relationship between taking computer science in high school and
college performance, but as these studies only examine correlation
between the variables and do not make any estimate of the causal
effect of the computer science course [7, 16]. Furthermore, many
people are arguing for all college students to take at least one
computer science course [11, 15], but studies to support this practice
don’t yet exist.

In order to understand the effect that taking computer science
classes has on students lives in college and beyond, we need multi-
ple studies, using sound methods to establish a causal relationship
between taking computer science and whatever the desired out-
comes are—whether it be higher college completion rate, greater
career satisfaction, or any other outcome.

4.2 Case study: IV for course data access

Instrumental variables have also proved very useful in education
research in quasi-experimental settings.

Researchers at Stanford sought to find the effect on student
performance of giving students access to additional data about
courses in their catalog, including past GPA and student’s reported
time commitments for the courses [4]. In order to test the causal
effect, they used a design known as randomized encouragement—
randomly notifying a subset of a population about an available
treatment, then using whether or not a subject was encouraged to
accept the treatment as an instrumental variable to understand the
causal effect of the treatment. In their case, this meant randomly
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notifying some students of the availability of additional course data.
They were able to show that being given access to additional course
information caused students GPA to decrease by a statistically
significant amount.

4.3 Prospects for IV in CER

As stated, IV along with other methods are great candidates for help-
ing us understand the causal relationship between taking computer
science classes and college and career outcomes. New research in
this area could act as a wake-up call for both private and public
entities seeking to make funding decisions.

The randomized encouragement design pattern could open the
door for studying the causal effect of many different treatments in
computer science education—not only the effects of taking com-
puter science courses, but also the effects of online learning tools,
using TA office hours, taking second-chance exams, and more.

For further examples of instrumental variables estimation and
more detail on how to perform one yourself see Agrist and Pishke’s
books [2, 3].

5 CONCLUSION

While analyzing the results of quasi-experiments or natural exper-
iments by looking at the correlation between the treatment and
outcome is a good initial step, it falls short of establishing causa-
tion. The methods that we have covered in this paper—regression
discontinuity designs (RDD), difference-in-differences (DiD), and
instrumental variables (IV)—can shed light on the causal effects of
treatments in education research. They can work in many contexts,
showing effects of large scale curricular decisions, instructional
tooling, pedagogical decisions, and more. In many cases, more than
one of these methods can and should be used to gain increased un-
derstanding of treatment effects. These methods have already been
successful in increasing understanding of educational phenomena
in many contexts, and it’s time that the computing education re-
search community uses these methods more fully to help us find
the answers we seek.
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