What’s in a Linked List? A Phenomenographic Study of Data
Structures Diagrams

Anonymous Author(s)

ABSTRACT

Diagrams in data structures provide a valuable context for untan-
gling the relationship between spatial ability and persistence in
computer science. Spatial ability is a strong predictor of success in
computer science, and data structures rely on spatially oriented lan-
guage and tasks (e.g., rotating binary trees, collisions in hash tables).
While we know that spatial ability is important for succeeding in
computer science, we have little understanding about why spatial
ability is important for succeeding in computer science. In this pa-
per, we present an initial study using phenomenographic methods
to explore how YouTubers draw and animate linked list diagrams
in instructional videos. Through inductive coding, we developed
a code book to describe how the diagrams were crafted. While
YouTubers used consistent language (e.g., “head,” “tail,” “node”) and
every YouTuber used diagrams, there was considerable variance in
how linked lists were represented. Representational choices seemed
to change in response to instructional goals or tasks.

CCS CONCEPTS

« Theory of computation — Data structures design and anal-
ysis; « Human-centered computing — Visualization techniques;
« Social and professional topics — Computer science educa-
tion.

KEYWORDS

data structures, linked lists, diagrams, spatial ability

ACM Reference Format:

Anonymous Author(s). 2018. What’s in a Linked List? A Phenomenographic
Study of Data Structures Diagrams. In Woodstock ’18: ACM Symposium on
Neural Gaze Detection, June 03-05, 2018, Woodstock, NY. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Spatial ability strongly correlates with and predicts success in early
Computer Science (CS) [5, 11, 26, 37], but little is known about why.
Data structures are common topics in CS1/CS2 curricula and have
semi-canonical diagrams that may be spatially oriented (e.g., nodes
moving, pointers pointing). Linked lists are considered a required
part of CS curricula [2], are taught early to novices in CS1/CS2,
and are a building block for more complex data structures (e.g.
binary search trees and hash tables). Thus, studying linked lists may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Woodstock 18, June 03—05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

provide an avenue to explore the relationship between CS content
and spatial ability. However, to the best of our knowledge, there
is no formal documentation on how instructors represent linked
lists or how those representations are used. Much of the existing
literature focuses on visualizers (e.g., Online Python Tutor [18],
CSTutor [7]), and these visualizers impose diagram standards onto
their users.

Informally, we have seen a variety of diagrams for illustrating
linked lists that vary in what information is made explicit or kept
implicit. Likewise, in conversations with colleagues, we have had
many discussions about our perceptions of the affordances and
drawbacks for different styles of diagrams. We are not aware of any
studies that have sought to systematically document the parameter
space for these diagrams and how that parameter space is used. By
documenting the parameter space, we can more formally interro-
gate whether different styles of diagrams affect student learning,
particularly as it pertains to spatial ability and the science of dia-
grams and reasoning. We take our first steps toward creating this
foundation for future research by first analyzing freely available
instructional videos on linked lists from YouTubeand by asking
the following research questions:

RQ1: What is the parameter space of diagrams YouTubers use
when discussing linked lists?

RQ2: How do YouTubers change these diagrams when used to
illustrate algorithms?

2 LITERATURE REVIEW

2.1 Diagrams and Reasoning

Diagrams can help offload cognition [50] and are frequently used
to reason about abstract data structures. Using diagrams leads to a
variety of common metaphors and imagery that are visually easier
to reason about than code or low-level memory models (e.g., an
array is a contiguous set of boxes; hashes separate things into buckets;
a bushy binary search tree is better than a spindly one). Thus,
instructors and students alike often sketch or visualize diagrams
when designing algorithms, leading to spatially oriented tasks (e.g.,
splitting unsorted arrays, merging sorted arrays, preventing collisions
in hash tables, or rotating binary trees). However, this presents a
natural problem for low spatial ability students who may have
difficulty visualizing diagrams and their manipulations.

For a diagram to be useful, the diagram needs to make important
concepts explicit in its features and be clear in what its features
can or cannot do. As students progress and gain more knowledge,
their domain expertise helps guide their attention and fill in im-
plicit information. Hegarty [20] argues that when presented with
instructional diagrams, a novice’s attention is focused on perceptu-
ally salient diagram features (e.g., high contrast shapes or colors).
Unfortunately, what a novice might consider perceptually salient
may not be conceptually important, and what an instructor may
consider conceptually important may not even be present. Hegarty,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03-05, 2018, Woodstock, NY

Canham, and Fabrikant [21] studied perceptual salience in weather
maps and found that participants were more accurate if they viewed
maps that made task-relevant information more visually salient.
Johnson-Glauch, Choi, and Herman [25] found that students failed
to use knowledge they possessed when there was not an explicit
feature in the diagram indicating to use that knowledge. The design
of diagrams can also hinder learning. Johnson-Glauch, et al. [25]
also found that students conflated different concepts when both
represented arrows. Similarly, Heiser and Tversky [23] found that
arrows in mechanical diagrams can communicate multiple mean-
ings (sometimes simultaneously) such as sequential steps or path
of motion. Arrows in linked data structure diagrams may also have
multiple meanings depending on how they are used.

Despite the prevalence of diagrams in a data structures context
and the existing literature on diagram design, we lack an under-
standing of what kinds of diagrams are used in the classroom.
Mazumder, Latulipe, and Pérez-Quifiones [31] studied variable, ar-
ray, and object diagrams in 15 Java textbooks and found that many
diagrams were not explanative in terms of system topology or be-
havior. However, they did not explicitly document the variance of
the diagrams found. Chotzen, Johnson, and Desai [8] found that
while students appear to understand linked list diagrams, they had
difficulty understanding pointer reassignment when applied to in-
sertion or deletion algorithms. Thus, it is difficult to quantify which
diagrams are helpful, effective, or spatially oriented when we do
not understand the parameter space for constructing diagrams.

2.2 Spatial Ability

According to Margulieux [30], spatial reasoning “is the mental
processing of spatial, non-verbal information” (p. 82), such as mental
rotations and translations of objects. Spatial ability and spatial skill
refer to an individual’s upper limit and current level of spatial
reasoning, respectively. In this paper, we will use spatial ability to
refer to both.

There is growing interest in spatial ability and its predictive
power on students’ success in computing. Spatial ability has been
correlated with success in a number of STEM fields, and appears
most important for novices [48]. In a 50-year longitudinal study,
Wai, Lubinski, and Benbow [49] showed spatial ability was a key
predictor of STEM achievement and success, and others have shown
similar correlations specifically in computer science [5, 11, 26, 37].
Unfortunately, spatial ability becomes a gatekeeper to success be-
cause novices must grapple with spatial ability in early coursework,
whereas experts have built up the domain knowledge and expertise
to cope with problem-solving without relying on purely spatial
means [45, 48, 49], similar to how experts can fill in implicit in-
formation in diagrams. Further complicating the picture, studies
have shown a gender gap in spatial ability favoring men [29] and a
socioeconomic gap favoring the wealthy [36].

To cope with these issues, researchers have looked to interven-
tions to bridge these gaps. In chemistry, Stieff, et. al [44] found
that training students in mixed spatial-analytic problem-solving
strategies eliminated the gender gap in an introductory organic
chemistry series. However, Stieft’s interventions depended on the
invariant, canonical nature of diagrams in chemistry education,

LastName1, LastName2, and LastName3

whereas computer science instructors do not agree on canonical di-
agram conventions or how existing diagram conventions should be
used. In engineering, Sorby and colleagues developed a spatial abil-
ity course for low spatial ability students, resulting in significantly
improved grades in later courses and better retention rates [42, 43].
In computer science, there have now been a few studies demon-
strating that spatial ability training can help students succeed in
CS1[6, 11, 38].

However, few studies try to tease apart the relationship between
general spatial ability and less obviously spatial, domain-specific
content. In mathematics education, Hegarty and Kozhevnikov [22]
showed the relationship between spatial ability and problem solving
strategy when applied to word problems: students who identified
spatial relationships in the problem and drew diagrams accordingly
performed better than students who did not.

3 METHODS

We used a phenomenographic approach to capture as many diagram
features as possible. Phenomenography seeks to describe the variety
of ways a group experiences and thinks about a topic. In our case,
we are interested in how a community of YouTubers conceptualizes
linked lists. Because of their prevalence in CS1/CS2-type courses
(and in programming interview question pools), we chose to focus
on linked lists and expected to see a variety of diagrams. A key
advantage of linked lists is that insertion is fast relative to arrays,
so we expected many YouTubers to mention insertion as a main
motivation for using them and to explain insertion algorithms. We
describe the data collection and analysis processes below.

3.1 Data Collection

To explore the parameter space of linked list diagrams, we searched
YouTube™for video resources. YouTubers, particularly independent
creators, come from all over the world and likely feel there is a gap
in existing videos that they can fill. This leads to a high degree of
variability, maximizing our data sampling. YouTube™ provides a rich
resource pool for our initial study, which will enable more targeted
data collection in the future. From the student perspective, these
free videos are helpful supplementary materials with thousands
(sometimes over a million) views and generally positive comments
(top comments frequently mention that the YouTuber was better
than their university professors).

To gather videos for analysis, we followed a literature review-
style approach: we used an Incognito tab on Google Chrome to
avoid search bias, agreed on keywords to use as search terms, and
pulled as many videos that used those keywords in the title of
the video. To look for generic videos covering singly linked lists,
we searched for “linked list” From this initial search, we found 13
generic videos covering linked lists: Video #1 [16], Video #2 [19],
Video #3 [10], Video #4 [4], Video #5 [24], Video #6 [17], Video

7 [32], Video #8 [14], Video #9 [46], Video #10 [33], Video #11 [3],
Video #12 [39], and Video #13 [41]. From the 13 generic videos, we
decided to exclude Video #11 because the YouTuber anthropomor-
phized nodes as people and described these nodes in a way that
none of the coders could map consistently to more standard linked
list diagrams or conventions. Additionally, many commenters also
mentioned being confused.

What’s in a Linked List? A Phenomenographic Study of Data Structures Diagrams

After initial coding of the 13 generic videos (see Section 3.2), the
last author found 5 additional generic videos to help verify codes
and resolve disagreements: Video #14 [40], Video #15 [34], Video
#16 [12], Video #17 [9], and Video #18 [15].

To look for diagrams in action during insertion, we searched
for “linked list insertion,” and found 4 videos specific to insertion:
Video #19 [13], Video #20 [35], Video #21 [28], and Video #22 [47].
Additionally, some of the previous generic videos included clips of
insertion, so these were added for analysis. For insertion-specific
videos and clips, we wanted to keep the focus on diagrams, so we
only included clips of diagram manipulation on a non-empty list
example. For YouTubers who used a diagram when illustrating
insertion but implemented the algorithm in code separately, we
included a clip of their coding process for comparison. See Table 1
for a summary of videos found.

Video Category Search Term # Of Videos
Generic “linked list” 18
Insertion-specific “linked list insertion”
Prepend Clips N/A 7
Insert Anywhere Clips N/A 10
Append Clips N/A 5

Table 1: Categories of videos curated from YouTube ™. Note:
a mixture of Generic and Insertion-specific videos con-
tributed to the Prepend, Insert Anywhere, and Append clips.

As shown above, every video has been cited in the references,
but we will refer to the videos by a random identifier (e.g., Video
#1, Video #2, Video #3) to avoid interpreting our analysis as an
evaluation or critique of individual YouTubers.

3.2 Qualitative Methods

To answer RQ1, we performed inductive coding on the 13 generic
videos from YouTube ™. Each author coded the videos separately,
then came together and developed a code book. We use Krippen-
dorff’s « to measure the inter-rater reliability of our code book [27].
The code book and four, randomly-selected videos were sent to
an outside colleague to check the clarity of the code book and the
ability of others to apply our code book. This first external check
did not yield satisfactory reliability (@ = 0.42), so we revised and
clarified the code book. The authors then sent the updated code
book and the same four videos to a second colleague, reaching
satisfactory reliability (¢ = 0.77). After a second round of refine-
ment, the authors used the same code book to code the 5 additional
generic videos found by the last author to check our internal relia-
bility. We calculated Krippendorff’s alpha a = 0.85, which suggests
good inter-rater reliability within the research team.

To answer RQ2, we followed roughly the same inductive coding
procedure for videos on linked list insertion. In addition to the four
videos specific to linked list insertion, 9 of the 18 generic videos
included some form of insertion. The videos were then broken
down into clips covering the three different types of insertion for
a linked list: prepend, insert anywhere, and append. The authors
inductively coded each type of insertion separately. We achieved
acceptable internal reliability (o = 0.94) for all insertion codes.

Woodstock ’18, June 03-05, 2018, Woodstock, NY

4 RESULTS

We provide our full code book online [1]. We include a shorter,
pictorial version of our code book in Table 2. We describe five
related, but different, themes that emerged from the codes.

Code Picture Example
Box and Arrow / Line
L, I
Multi-box and Arrow / Line
I I
Left-to-right Linear
—| - —
Non-linear l
l—
/
Arrow to NULL
—— NULL
Head Label HEAD
]
Head Arrow 1
—
Address of Node
—
1024
Address of Next Node
1024 p—

Table 2: Shorter, pictorial code book used to analyze dia-
grams

4.1 All YouTubers used a diagram

Every YouTuber used a diagram to visualize a linked list, though
different YouTubers used diagrams for different purposes.

4.2 YouTubers used similar language with
differing semantics

Almost all YouTubers used and defined canonical linked list termi-
nology (e.g., “head”, “tail,” “node”), but there was little discussion
on where these terms came from and little variation on the types
of terms used. For example, Video #3 states, “A linked list is made
up of nodes. Each node stores an item of data,” but doesn’t explain
where the term “node” comes from. On the other hand, Video #13
acknowledges this ambiguity: “Each of these boxes we call nodes,
that’s just what they’re called”

With “head” and “tail,” YouTubers often alias these terms for
the first and last node, respectively. For example, Video #4 states,
“The head node points to the second node, which points to the

Woodstock ’18, June 03-05, 2018, Woodstock, NY

AN INTRODUCTION o LINKEO L1STS

(C+)
S EEER
node

Figure 1: Cropped screenshot taken from Video #12. The
YouTuber draws a box and arrow diagram (top), writes a code
snippet (bottom left), then draws a multi-box and arrow di-
agram (bottom right).

third node, and so on until we reached the tail node that points
to null, indicating the end of the list” However, this naming is
misleading or confusing as “head” and “tail” are usually references
or pointers, not the nodes themselves. When implementing linked
lists, YouTubers had different layers of encapsulation, leading to
subtle changes in the meaning of “head” and “tail” For example,
Video #2 implemented a linked list object wrapper in Java: “We
define a class, LinkedList, that’s basically going to wrap our head”
On the other hand, Video #10 implemented a node struct in C/C++:
“The first node is also called the head node, and the only information
that we keep all the time is the address of the head node or address
of the first node” Both YouTubers used the word “head.” but their
differing implementations led to two different meanings.

Other common talking points among YouTubers included com-
paring linked list performance to arrays and their corresponding
big-O analyses. Most YouTubers stored integers in their linked lists
for simplicity, but mentioned linked lists can hold any data type.
Some YouTubers mentioned different types of linked lists, such as
doubly linked lists or sorted linked lists.

4.3 YouTubers move between diagrams of
different and varying levels of abstraction

Some YouTubers opted to show different types of diagrams to high-
light different layers of abstraction and detail. For example, Video
#12 started with a box and arrow diagram, then wrote code for
the node, then illustrated the code with a multi-box and arrow
diagram (see Figure 1). Thus, the YouTuber started at a higher level
of abstraction with less detail, then moved to a lower level of ab-
straction with more detail. On the other hand, Video #15 started
with a detailed multi-box and arrow diagram while implementing
the linked list, then illustrated linked list traversal with a simpler
box and arrow diagram.

Next, we consider insertion videos. Analyzing insertion videos
gave us clearer insight into how diagrams changed when applied
to an algorithm.

For prepending, having a head reference becomes salient because
that is the property of the list that is changing. From our analysis,

LastName1, LastName2, and LastName3
Singly Linked List: Prepend

Al Bl —C 0| — E

Figure 2: Cropped screenshot taken from Video #21. The
YouTuber does not have a head reference while illustrating
prepending.

on on.next
J" ~

>>> my_list.add_to_tail(3)

Figure 3: Cropped screenshot taken from Video #5. The
YouTuber does not have an explicit null while illustrating
appending.

4 of 7 clips consistently used a head reference, but 2 of 7 clips, both
from the same video, added a head reference during the prepending
process. Interestingly, 1 clip did not show a head reference at all
while prepending and instead opted to show static before and after
diagrams (see Figure 2).

For appending, having an explicit null (e.g., arrow to NULL)
becomes salient to help identify which node is last or where the
end of the list is, assuming a tail pointer is not used. All 5 clips
analyzed did not use a tail pointer, and 3 clips consistently used an
explicit null. However, 1 clip failed to have an explicit null at all
while appending (see Figure 3), and 1 clip showed an explicit null
prior to appending but failed to add it back after appending.

Most implementations of linked list in C/C++ incorporated ad-
dresses of nodes and next nodes into their diagrams but no im-
plementations in Python or Javascript incorporated addresses. For
examples in C/C++, having explicit addresses or a memory dia-
gram may be more important to showcase the language’s memory
model (see Figure 4), but this lower level of abstraction may not be
applicable to higher-level languages like Python or Javascript.

What’s in a Linked List? A Phenomenographic Study of Data Structures Diagrams
Mewov La,

< 5| [[TC=TTTITIT =

200 204 232 242

Figure 4: Cropped screenshot taken from Video #10. The
YouTuber shows how a linked list fits in a 1D memory lay-
out.

<

vpublic class Node {
Node next;
int data;
public Node(int data) {
this.data = data;

} —

(Q 4 Q—» O—)(\)

public void append(int data) {
Node current = this;
while (current.next != null) {
current = current.next;

current.next = new Node(data):|
}
)

Figure 5: Cropped screenshot taken from Video #2. The
YouTuber writes code that only manipulates one node at a
time, but shows a diagram giving the illusion of access to all
nodes at once.

4.4 Diagrams are subject to unexplained
semantics that may not align with code
semantics

Often, YouTubers assume diagram semantics to be self-evident, and
they only label the diagram’s parts rather than explain the rules of
manipulation. Whereas code has a compiler to check for syntax and
test cases to check for correct behavior, hand-drawn diagrams or
animated slides do not have “verifiers” that enforce semantics and
behavior. For example, when designing algorithms for linked lists,
diagrams often give the illusion of having access to all nodes in the
list at a time, whereas code typically has access to a single node at
a time (see Figure 5). This easily leads to out-of-order assignment
for an algorithm like insertion (see Figure 6). Additionally, many
YouTubers used arrows to represent either a reference or an area
for focus but did not explicitly specify which was which, aligning
with Heiser and Tversky’s [23] findings.

Insertion anywhere is arguably more complicated than prepend-
ing or appending to a linked list, as 6 out of 10 diagram-based clips
analyzed showcased an incorrect algorithm, meaning if the diagram
changes were translated pedantically to code, the resulting code
would exhibit incorrect behavior. This seems to align with findings
reported by Chotzen, et. al [8]. For example, Video #14 starts by
creating a new node. However, the YouTuber reassigns the previous
node’s next pointer first (see Figure 6). In code, this would make the
programmer lose access to the rest of the list, and thus not be able
to assign the new node’s next pointer correctly in the last step. This
finding stands out especially when all 4 of the clips that showed
code were implemented correctly, and only 2 out of those 4 warned
about the perils of an out-of-order assignment.

Additionally, having a diagram leads to “diagram language”
Treating the arrows or lines connecting nodes as “links” and there-
fore physical objects leads YouTubers to using inaccurate language

Woodstock ’18, June 03-05, 2018, Woodstock, NY

APF\ l C'hl'\ 5 G'W\ L W\HK éﬂ.“‘/ /rﬂ'f“

April (s | | Gwna| Pk 5a.|.|~/ Torm

Apeil (s | | Gwmal MK 44.117(Torm

April (s wna| Mk 51&“7 Tor

April (s Cwa| Pk 5&“7 Torm

—

Figure 6: Cropped screenshots taken from Video #14. The
YouTuber shows an incorrect insertion algorithm via out-of-
order assignment. Annotations added in red.

(e.g., “breaking,” “removing,” or “deleting” references) that has no
direct mapping to code.

Another limitation of drawing algorithms in real time, whether
on pen and paper, whiteboard, or digital canvas, is showing variable
reassignment in two steps, when in terms of code, reassignment is
viewed as a single step (see Figure 6).

4.5 YouTubers used diagrams according to
different strategies

YouTubers used diagrams for different strategies when implement-
ing algorithms in code. For example, Video #7 used a static image at
the bottom of the screen while coding and referred to the diagram
with a lot of virtual pointing via the mouse (see Figure 7). Video #13
introduced the topic with diagrams, then switched entirely to code.
Video #5 showed the diagram, then the code, then an animated
diagram alongside the code.

In our code book, we extrapolated these behaviors to 3 levels of
interaction between code and diagram: no correspondence, ad-hoc
correspondence, and one-to-one correspondence. For no correspon-
dence, some videos were heavily introductory and had no code
implementation. Others were focused on implementation and only
showed a static diagram (see Figure 7). For ad-hoc correspondence,
some YouTubers bounced between implementing the linked list
and showing an example using the diagram, but the two were not

Woodstock ’18, June 03-05, 2018, Woodstock, NY

insertFirst(data
ode(data, -head) ;

insertLast(data
node = Node
current;

f (1this.head) {
.head = node;

I e {
current = -head;

Figure 7: Screenshot taken from Video #7. The YouTuber
continuously references a static diagram at the bottom of
the screen while implementing the linked list.

tightly coupled. For one-to-one correspondence, YouTubers stepped
through their code and illustrated the corresponding change in the
diagram, thus keeping the program state and diagram state in sync.
The varying uses of diagrams in relation to code may indicate a
preference for spatial thinking. If a YouTuber has no correspon-
dence and little diagram interaction, then they implicitly require the
viewer to mentally animate changes. If a YouTuber shows one-to-
one correspondence, then there may be less reliance on a viewer’s
spatial ability.

5 DISCUSSION

5.1 What (if anything) should we standardize?

We might be tempted to think that diagram standardization is the
answer to all of the variety, that one diagram will have all the
features to be clear to any audience. This is certainly the case for
molecular representations in chemistry: how one professor draws
Fischer projections in one university is how another will draw the
same Fischer projection. However, computer science is unique in
this sense: we have a variety of programming paradigms and use
cases for linked lists that may influence the types of diagrams we
draw. We unpack some examples of these affordances below.

Different levels of abstraction may be better for different pro-
gramming paradigms. For example, having a memory layout may
make the C/C++ memory model more salient and easier to un-
derstand, but would be too low level for languages like Python
or Javascript. Similarly, having explicit null values may be more
applicable to C/C++ because memory management does not auto-
initialize values, but less applicable in auto-initializing languages
like Python and Java.

Different features become salient when implementing a linked
list versus exploring theoretical points. For example, explicitly draw-
ing the head, tail, and appropriate object wrappers may be more
relevant when considering linked list implementation. On the other
hand, a simpler diagram may be more useful and flexible when
considering big-O analysis or comparing to an array.

Thus, moving toward a standardized linked list diagram for all
data structures contexts may not be beneficial nor feasible. Instead,
we may look towards standardizing diagram semantics. Many of

LastName1, LastName2, and LastName3

the “mistakes” we found (i.e., incorrect algorithm when performing
insertion on a diagram) were likely due to loose, unexplained, and
unenforced diagram semantics. Agreeing upon a set of semantics
may be easier for instructors and more helpful for students. How-
ever, defining the most beneficial diagrams and their associated
semantics for a particular context or learning objective remains an
open area for future work.

5.2 Uncommon Parameters

Uncommon parameters represent outliers in our analysis, but they
question the “status quo” of linked list diagrams. For example, few
videos drew a node or list wrapper to indicate encapsulation. Few
videos drew non-linear linked lists to highlight the randomness of
node location. Only one video showed a reference to a new node
whereas many showed a reference to the first node. Few videos
explained the perils of out-of-order assignment when inserting.
However, we should not immediately take these outliers as inno-
vations and incorporate them into our practice. Rather, we should
carefully consider what the learning objectives are for our specific
context and design diagrams accordingly.

6 LIMITATIONS

We acknowledge YouTube™ may not be a primary resource for tra-
ditional students studying in a university setting and may not be
up-to-standard to some. However, given the prevalence and popu-
larity of these videos, we believe there is a demand for these types of
instructional videos that many find helpful. Additionally, we wanted
to prevent personalized search results from potentially biasing data
collection. While we cannot fully eliminate search bias, we believe
that the “base” search bias will show what YouTube “believes to be
most relevant to our search terms.

7 CONCLUSION

Our analysis introduces a parameter space for instructors to con-
tinue thinking critically about how diagrams can enhance student
learning and which features of a diagram are most salient to a par-
ticular learning objective. YouTubers and instructors alike seem to
have intuitions about when certain abstractions or diagrammatic
features are important for reasoning about linked lists. For exam-
ple, different features may be helpful in certain contexts (i.e., head
reference when prepending), but less relevant in others (i.e., head
reference when appending). However, these intuitions are often not
made explicit. Without explicit instruction on diagram semantics
or the rules of manipulations, students may have to rely more on
their spatial ability to mentally animate diagram transformations
like in Figure 2 or instructors and students alike may make easy
mistakes like out-of-order manipulations in Figure 6. Thus, we still
need further research in understanding the affordances of differ-
ent diagrams and what kinds of instruction using diagrams can
especially support low spatial ability students.

ACKNOWLEDGMENTS

Acknowledgements removed for dual-anonymous review process.

What’s in a Linked List? A Phenomenographic Study of Data Structures Diagrams

REFERENCES

(1]
(2]

(3]

=L

=
0

[10

[11]

[12]

[13

[14]

=
A

[16

[17]

[18

[19

[20]

[22]

[23]

[24

[25]

[26]

[nd]. Code book (Public). https://docs.google.com/document/d/15_
kqvyws9KGXjHhqHafRHbyIpCDR3KtdSAi0xx2XFXc/edit?usp=sharing

ACM Computing Curricula Task Force (Ed.). 2013. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science. ACM, Inc. https://doi.org/10.1145/2534860

Derek Banas. 2013. Linked List in Java. https://www.youtube.com/watch?v=
195KUinjBpU

beiatrix. 2019. Linked Lists | Data Structures in JavaScript. https://www.youtube.
com/watch?v=ChWWEncl76Y

Ryan Bockmon, Stephen Cooper, Jonathan Gratch, Jian Zhang, and Mohsen
Dorodchi. 2020. Can Students’ Spatial Skills Predict Their Programming Abilities?.
In Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education. ACM, Trondheim Norway, 446-451. https://doi.org/
10.1145/3341525.3387380

Ryan Bockmon, Stephen Cooper, William Koperski, Jonathan Gratch, Sheryl
Sorby, and Mohsen Dorodchi. 2020. A CS1 Spatial Skills Intervention and the
Impact on Introductory Programming Abilities. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
"20). Association for Computing Machinery, New York, NY, USA, 766-772. https:
//doi.org/10.1145/3328778.3366829

Sarah Buchanan and Joseph J. Laviola. [n.d.]. CSTutor: A Sketch-Based Tool for
Visualizing Data Structures. 14, 1 ([n.d.]), 1-28. https://doi.org/10.1145/2535909
Harrison Chotzen, Alasdair J. Johnson, and Parth M. Desai. 2019. Exploring the
Mental Models of Undergraduate Programmers in the Context of Linked Lists. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 1261. https://doi.org/10.1145/3287324.3293862
CodeWhoop. 2016. Linked List - Basics using C++. https://www.youtube.com/
watch?v=Zgzoe8jjidk

Computerphile. 2017. Linked Lists - Computerphile. https://www.youtube.com/
watch?v=_jQhALI4ujg

Stephen Cooper, Karen Wang, Maya Israni, and Sheryl Sorby. 2015. Spatial
Skills Training in Introductory Computing. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research (Omaha,
Nebraska, USA) (ICER ’15). Association for Computing Machinery, New York,
NY, USA, 13-20. https://doi.org/10.1145/2787622.2787728

CrashCourse. 2017. Data Structures: Crash Course Computer Science 14. https:
//youtu.be/DuDz6B4cqVe

Vivekanand Khyade Algorithm Every Day. 2017. Insert a node in Singly
Linked List(at the start , middle or end). https://www.youtube.com/watch?
v=0x0YNDbVTiSE

Vivekanand Khyade Algorithm Every Day. 2017. Introduction to Linked List in
Data Structures (very easy). https://www.youtube.com/watch?v=Rs1KPyb9fHY
Sunil Dhimal. 2016. Introduction to Linked List. https://www.youtube.com/
watch?v=zR6i[QnooP0

CS Dojo. 2018. Introduction to Linked Lists (Data Structures Algorithms 5). https:
//www.youtube.com/watch?v=WwfhLC16bis

Brian Faure. 2017. Python Data Structures 2: Linked List. https://www.youtube.
com/watch?v=JIMyYuY1aXU

Philip J. Guo. [n.d.]. Online python tutor: embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM technical symposium
on Computer science education - SIGCSE ’13 (Denver, Colorado, USA, 2013). ACM
Press, 579. https://doi.org/10.1145/2445196.2445368

HackerRank. 2016. Data Structures: Linked Lists. https://www.youtube.com/
watch?v=njTh_OwM}A

M. Hegarty. 2014. Multimedia learning and the development of mental models.
Cambridge University Press, Cambridge, 673-702.

M. Hegarty, M. S. Canham, and S. I. Fabrikant. 2010. Thinking about the weather:
How display salience and knowledge affect performance in a graphic inference
task. Journal of Experimental Psychology: Learning, Memory, and Cognition 36, 1
(2010), 37-53. https://doi.org/10.1037/a0017683

Mary Hegarty and Maria Kozhevnikov. [n.d.]. Types of Visual-Spatial Repre-
sentations and Mathematical Problem Solving. 91, 4 ([n.d.]), 684-689. https:
//doi.org/10.1037/0022-0663.91.4.684

Julie Heiser and Barbara Tversky. 2006. Arrows in Comprehend-
ing and Producing Mechanical Diagrams. Cognitive Science 30,
3 (2006), 581-592. https://doi.org/10.1207/515516709c0g0000_70
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog00007 0
Aaron Jack. 2020. Basic DATA STRUCTURES Explained - LINKED LISTS. https:
/[www.youtube.com/watch?v=neliyAP9__o

N. Johnson-Glauch and G. L. Herman. 2020. How engineering students use
domain knowledge when problem solving using different visual representations.
Journal of Engineering Education 109, 3 (July 2020). https://doi.org/10.1002/jee.
20348

Sue Jones and Gary Burnett. [n.d.]. Spatial Ability and Learning to Program. 4, 1
([n.d.]). 47-61. https://doi.org/10.17011/ht/urn.200804151352

[27

S
&,

[29

[30

[31

(32

[33

[34

@
2

[36

(37]

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

(48]

[49]

[50

Woodstock ’18, June 03-05, 2018, Woodstock, NY

K. Krippendorff. 2011. Computing Krippendorff ’s Alpha-Reliability. https://
repository.upenn.edu/asc_papers/43/

LucidProgramming. 2018. Data Structures in Python: Singly Linked Lists — Insertion.
https://www.youtube.com/watch?v=FSsriwQO0qYE

Yukiko Maeda and So Yoon Yoon. 2013. A Meta-Analysis on Gender Differences in
Mental Rotation Ability Measured by the Purdue Spatial Visualization Tests: Visu-
alization of Rotations (PSVT:R). Educational Psychology Review 25, 1 (2013), 69-94.
https://doi.org/10.1007/s10648-012-9215-x arXiv:https://doi.org/10.1007/s10648-
012-9215-x

Lauren E. Margulieux. 2019. Spatial Encoding Strategy Theory: The Relationship
between Spatial Skill and STEM Achievement. In Proceedings of the 2019 ACM
Conference on International Computing Education Research (Toronto ON, Canada)
(ICER ’19). Association for Computing Machinery, New York, NY, USA, 81-90.
https://doi.org/10.1145/3291279.3339414

Syeda F. Mazumder, Celine Latulipe, and Manuel A. Pérez-Quifiones. 2020. Are
Variable, Array and Object Diagrams in Java Textbooks Explanative?. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education. ACM, Trondheim Norway, 425-431. https://doi.org/10.1145/
3341525.3387368

Traversy Media. 2019. Linked List Data Structure | JavaScript.
youtube.com/watch?v=ZBdESDEIQQU
mycodeschool. 2013. Introduction to linked list.
watch?v=NobHIGUjV3g

mycodeschool. 2013. Linked List - Implementation in C/C++. https://youtu.be/
veQIFT79_50

mycodeschool. 2013. Linked List in C/C++ - Inserting a node at beginning. https:
//www.youtube.com/watch?v=cAZ8CyDY56s

Miranda C. Parker, Amber Solomon, Brianna Pritchett, David A. Illingworth,
Lauren E. Marguilieux, and Mark Guzdial. 2018. Socioeconomic Status and
Computer Science Achievement: Spatial Ability as a Mediating Variable in a Novel
Model of Understanding. In 2018 ACM Conference on International Computing
Education Research. ACM, Espoo, Finland, 97-105.

Jack Parkinson and Quintin Cutts. 2018. Investigating the Relationship Be-
tween Spatial Skills and Computer Science. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland)
(ICER ’18). Association for Computing Machinery, New York, NY, USA, 106-114.
https://doi.org/10.1145/3230977.3230990

Jack Parkinson and Quintin Cutts. 2020. The Effect of a Spatial Skills Training
Course in Introductory Computing. In Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE °20). Association for Computing Machinery, New York, NY, USA, 439-445.
https://doi.org/10.1145/3341525.3387413

Paul Programming. 2012. How to Create a Linked List C++ Introduction to Linked
Lists. https://www.youtube.com/watch?v=05w]Jk]JJpKtM

ReelLearning. 2012. Data Structures: Introduction to Linked Lists. https://youtu.
be/pBrz9HmjFOs

Jacob Sorber. 2019. Understanding and implementing a Linked List in C and Java.
https://www.youtube.com/watch?v=VOpjAHCee7c

Sheryl Sorby, Beth Casey, Norma Veurink, and Alana Dulaney. 2013. The role of
spatial training in improving spatial and calculus performance in engineering
students. Learning and Individual Differences 26 (2013), 20 — 29. https://doi.org/
10.1016/j.1indif.2013.03.010

Sheryl A. Sorby. 2009. Educational Research in Developing 3a€D Spatial Skills for
Engineering Students. International Journal of Science Education 31 (Feb. 2009),
459-480. Issue 3. https://doi.org/10.1080/09500690802595839

M. Stieff, B. L. Dixon, M. Ryu, B. C. Kumi, and M. Hegarty. 2014. Strategy training
eliminates sex differences in spatial problem solving in a stem domain. Journal
of Educational Psychology 106, 2 (2014), 390-402.

Mike Stieff and Sonali Raje. 2010. Expert Algorithmic and Imagistic Prob-
lem Solving Strategies in Advanced Chemistry. Spatial Cognition & Com-
putation 10, 1 (2010), 53-81. https://doi.org/10.1080/13875860903453332
arXiv:https://doi.org/10.1080/13875860903453332

Telusko. 2017. 5 Linked List Implementation in Java Part 1 | Data Structures.
https://www.youtube.com/watch?v=SMIq13-FZSE

Telusko. 2017. 6 Linked List Implementation in Java Part 2 | Data Structures.
https://youtu.be/AegXFjCUcQM

David H. Uttal and Cheryl A. Cohen. 2012. Spatial Thinking and STEM
Education: When, Why, and How? Psychology of Learning and Motiva-
tion 57 (2012), 147-181. https://doi.org/10.1016/B978-0-12-394293-7.00004- 2
arXiv:https://doi.org/10.1016/B978-0-12-394293-7.00004-2

Jonathan Wai, David Lubinski, and Camilla P. Benbow. 2009. Spatial Ability for
STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge
Solidifies Its Importance. Journal of Educational Psychology 101, 4 (2009), 817-835.
https://doi.org/10.1037/a0016127 arXiv:https://doi.org/10.1037/a0016127
Margaret Wilson. [n.d.]. Six views of embodied cognition. 9, 4 ([n. d.]), 625-636.
https://doi.org/10.3758/BF03196322

https://www.

https://www.youtube.com/

https://docs.google.com/document/d/15_kqvyws9KGXjHhqHafRHbyIpCDR3KtdSAi0xx2XFXc/edit?usp=sharing
https://docs.google.com/document/d/15_kqvyws9KGXjHhqHafRHbyIpCDR3KtdSAi0xx2XFXc/edit?usp=sharing
https://doi.org/10.1145/2534860
https://www.youtube.com/watch?v=195KUinjBpU
https://www.youtube.com/watch?v=195KUinjBpU
https://www.youtube.com/watch?v=ChWWEncl76Y
https://www.youtube.com/watch?v=ChWWEncl76Y
https://doi.org/10.1145/3341525.3387380
https://doi.org/10.1145/3341525.3387380
https://doi.org/10.1145/3328778.3366829
https://doi.org/10.1145/3328778.3366829
https://doi.org/10.1145/2535909
https://doi.org/10.1145/3287324.3293862
https://www.youtube.com/watch?v=Zgzoe8jjidk
https://www.youtube.com/watch?v=Zgzoe8jjidk
https://www.youtube.com/watch?v=_jQhALI4ujg
https://www.youtube.com/watch?v=_jQhALI4ujg
https://doi.org/10.1145/2787622.2787728
https://youtu.be/DuDz6B4cqVc
https://youtu.be/DuDz6B4cqVc
https://www.youtube.com/watch?v=0xoYNbVTiSE
https://www.youtube.com/watch?v=0xoYNbVTiSE
https://www.youtube.com/watch?v=Rs1KPyb9fHY
https://www.youtube.com/watch?v=zR6iIQnooP0
https://www.youtube.com/watch?v=zR6iIQnooP0
https://www.youtube.com/watch?v=WwfhLC16bis
https://www.youtube.com/watch?v=WwfhLC16bis
https://www.youtube.com/watch?v=JlMyYuY1aXU
https://www.youtube.com/watch?v=JlMyYuY1aXU
https://doi.org/10.1145/2445196.2445368
https://www.youtube.com/watch?v=njTh_OwMljA
https://www.youtube.com/watch?v=njTh_OwMljA
https://doi.org/10.1037/a0017683
https://doi.org/10.1037/0022-0663.91.4.684
https://doi.org/10.1037/0022-0663.91.4.684
https://doi.org/10.1207/s15516709cog0000_70
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog0000_70
https://www.youtube.com/watch?v=ne1iyAP9__o
https://www.youtube.com/watch?v=ne1iyAP9__o
https://doi.org/10.1002/jee.20348
https://doi.org/10.1002/jee.20348
https://doi.org/10.17011/ht/urn.200804151352
https://repository.upenn.edu/asc_papers/43/
https://repository.upenn.edu/asc_papers/43/
https://www.youtube.com/watch?v=FSsriWQ0qYE
https://doi.org/10.1007/s10648-012-9215-x
https://arxiv.org/abs/https://doi.org/10.1007/s10648-012-9215-x
https://arxiv.org/abs/https://doi.org/10.1007/s10648-012-9215-x
https://doi.org/10.1145/3291279.3339414
https://doi.org/10.1145/3341525.3387368
https://doi.org/10.1145/3341525.3387368
https://www.youtube.com/watch?v=ZBdE8DElQQU
https://www.youtube.com/watch?v=ZBdE8DElQQU
https://www.youtube.com/watch?v=NobHlGUjV3g
https://www.youtube.com/watch?v=NobHlGUjV3g
https://youtu.be/vcQIFT79_50
https://youtu.be/vcQIFT79_50
https://www.youtube.com/watch?v=cAZ8CyDY56s
https://www.youtube.com/watch?v=cAZ8CyDY56s
https://doi.org/10.1145/3230977.3230990
https://doi.org/10.1145/3341525.3387413
https://www.youtube.com/watch?v=o5wJkJJpKtM
https://youtu.be/pBrz9HmjFOs
https://youtu.be/pBrz9HmjFOs
https://www.youtube.com/watch?v=VOpjAHCee7c
https://doi.org/10.1016/j.lindif.2013.03.010
https://doi.org/10.1016/j.lindif.2013.03.010
https://doi.org/10.1080/09500690802595839
https://doi.org/10.1080/13875860903453332
https://arxiv.org/abs/https://doi.org/10.1080/13875860903453332
https://www.youtube.com/watch?v=SMIq13-FZSE
https://youtu.be/AeqXFjCUcQM
https://doi.org/10.1016/B978-0-12-394293-7.00004-2
https://arxiv.org/abs/https://doi.org/10.1016/B978-0-12-394293-7.00004-2
https://doi.org/10.1037/a0016127
https://arxiv.org/abs/https://doi.org/10.1037/a0016127
https://doi.org/10.3758/BF03196322

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Diagrams and Reasoning
	2.2 Spatial Ability

	3 Methods
	3.1 Data Collection
	3.2 Qualitative Methods

	4 Results
	4.1 All YouTubers used a diagram
	4.2 YouTubers used similar language with differing semantics
	4.3 YouTubers move between diagrams of different and varying levels of abstraction
	4.4 Diagrams are subject to unexplained semantics that may not align with code semantics
	4.5 YouTubers used diagrams according to different strategies

	5 Discussion
	5.1 What (if anything) should we standardize?
	5.2 Uncommon Parameters

	6 Limitations
	7 Conclusion
	Acknowledgments
	References

