A Quantitative Analysis of Student Solutions to Graph Database
Problems

Anonymous Author(s)

Abstract

As data grow both in size and in connectivity, there has been a
growing interest in using graph databases in industry. However,
there has been little research on graph database education. In re-
sponse to the need to introduce college students to graph databases,
this paper is the first to analyze students’ errors in their submissions
writing different types of queries in Cypher, the query language
for Neo4j-the most prominent graph database. Based on 40,093
student submission from homework assignments in an upper-level
computer science database course, this paper provides insights
and quantitative analysis about students’ learning when solving
graph database problems. The data show that writing more complex
queries initially takes students more time and more attempts to
get right. Additionally, students struggle to correctly use Cypher’s
WITH clause to define variable names, and these errors persist over
multiple homework problems requiring the same techniques.

CCS Concepts

+ Applied computing — Education; « Social and profes-
sional topics — Computer science education; - Information
systems — Information retrieval; Query representation.

Keywords

Neo4j, database education, online assessment

ACM Reference Format:

Anonymous Author(s). 2020. A Quantitative Analysis of Student Solutions
to Graph Database Problems. In Woodstock ’18: ACM Symposium on Neural
Gaze Detection, June 03—05, 2018, Woodstock, NY. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

In many fields data is represented in graph form, which is one of
the fundamental data abstractions in the field of computer science
that emphasizes not only the data itself but also the relationships
between data [8]. Relational database have been used for decades
[11], but as the amount of data and the need to store data that
is rich in relationships is increasing drastically, a special kind of
the NoSQL database model has emerged: graph databases [21].
Graph databases store relationships and connections based on the
fundamental graph theory constructed via nodes (entities) and
edges (relations), making it an optimal choice to store and query
graph structures and seeking to provide both better performance
and better usability for the right kinds of data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Woodstock 18, June 03—05, 2018, Woodstock, NY

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6874-2/20/06...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In recent years, the popularity of graph databases has spiked
drastically: in 2017, over half of the enterprise users across all indus-
try utilize graph database due to its speed and enhanced execution.
The report also points out global graph database market in 2019 is
approximately 810 Million USD and is anticipated to be 4.5 billions
USD in the next decade [1].

In this paper we focus on the Neo4j database and its Cypher
language, a declarative query language that has SQL-like syntax
augmented by the ability to pattern match on graph relationships.
It is one of the most popular graph database: eBay use Neo4j in its
eBay App for Google Assistant in order to support the probabilis-
tic models and aid understandings in the conversational shopping
scenario; NASA use Neo4j in its knowledge architecture ‘Lesson
Learned Database’ to boost the efficiency of extracting knowledge
from connected areas; other industries, Walmart, Cisco, Airbnb etc.
[25] started using graph model thanks to its capability in construct-
ing relationships and its simplicity in both visual understandings
and agility in processing graph-related data. The power of Neo4; is
also supported by academic studies. According to Fernandes and
Bernardino [14], Neo4j stands out among the current graph data-
base thanks to its simplicity, agility and flexibility. Vicknair et al.
[28] also used Neo4j to show that graph system shows better per-
formance in full-text character searches and structural type queries
compared to that in relational database.

The need for introducing students to graph databases is also
rising with potential pervasive usage in chemistry, biology, seman-
tic web, social networking and recommendation engines [10, 23].
Multiple universities have opened courses that incorporate graph
database into their topics: Portland State University offered Neo4]
in its ‘Data Management in the Cloud’ course as early as 2014 [20];
the University of Pennsylvania’s Database and Information Systems
course has taught Neo4] since 2017 [12]; our university’s ‘Database
Systems’ course, taught by the last author, also covers Neo4;j since
2018 [6]. Additionally, Coursera, the online learning platform, offers
introductory Neo4j courses [13, 18].

In response to the need of graph database talents and the lack of
CS education research on how students learn graph database, we
study the following research questions:

(1) What is the distribution of correct submissions, semantic er-
rors, and syntactic errors for students writing Neo4j queries?

(2) What common errors do students make when they first use
the Cypher query language?

(3) Which concepts students spend most time learning?

2 Literature Review

Relational database management systems (RDBMS) have been
long-established and used in industries for decades, but due the rise
of data that are bigger both in size and in interconnectivity, there is
a trend to utilizing non-relational database in the area of grid and
cloud computing [22, 26], as they are more efficient, distributed,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

schema-free compared to the traditional database management
system.

However, Computer Science Education research on NoSQL data-
base languages is significantly lacking compared to that on SQL
databases. Ahadi et al. [2, 3] provides a quantitative analysis about
relative difficulties in SQL queries. The author’s previous work [7]
uses quantitative approaches to identify the most common students’
errors when writing SQL queries; other papers study the potential
difficulties students face from ease-of-use perspective [27]; other
researchers proposed novel tutors and tools to help with teaching
SQL [9]. There are rare studies conducted about NoSQL database.
Fowler [15] demonstrated a successful teaching case that incorpo-
rated NoSQL database into the traditional database management
course to students and received significant improvement in under-
standings NoSQL. Sriram [24] also proposed a four-tiered learning
model to better teach NoSQL Databases to undergraduate students.

We have only found one study about graph database in Com-
puter Science Education [19] that conducted a Neo4;j teaching case
that shows the successful improvements in Vocational Education
and Training environment. Other research on graph database is
mainly about performance analysis on different operating systems
or introductions on the differences between graph database and
RDBMS or other NoSQL database [16, 28].

To the best of our knowledge, there has been no research in
understanding the mistakes students make while learning to query
graph databases. In this paper, we show the descriptive statistics
derived from the students submissions in homework problems and
investigate what concepts students struggle with most. To that
end, we look at students’ median time to finish and the number of
submissions.

3 Introduction to Neo4j and Cypher

Cypher is the query language used to query Neo4j databases.
It has a similar syntax to SQL, with declarative pattern-matching
features added for querying graph relationships. As one of the
best-known graph databases, Neo4j stands out among the current
existing graph models for its performance, simplicity and its pow-
erful query language [14, 17].

In this section we briefly demonstrate the syntax of Neo4;j queries,
showing the similarities and differences when compared to SQL
via two analogous databases. The graph database we will use for
our examples only has two kinds of nodes: Movie and Actor, and
one relationship: ACTED_IN between the two kinds of nodes.

Movie node: each Movie has its unique id (movie_id),
its name (movie_name), release year (release_year),
ratings (ratings), genre (genre).

Actor node: each star has their unique id (actor_id),
name (actor_name), birth year (birth_year)and their
birth country (birth_country).

Actor and Movie nodes have the relationship:
(:Actor)-[:ACTED_IN]->(:Movie).

An actor may act in many movies and a movie may
have many actors.

Figure 1 shows a graph representation of some example data
that may be present in a database with the defined schema.

Movie 1
{1, "Movie Name 1",

ACTED_IN\, 3737, 6.5. Comedy}

ACTED_IN

Actor 2

£"John Doe", 1998 fActor 1 {"Jane Doe",
UK}

1999, USA}

{2, "Movie Name 2",
2016, 7, Sci-Fi}

Figure 1: Example of data stored in a graph database.

The equivalent relational database we use for this example has
three tables:

Actor: actor_id (INT), actor_name (VARCHAR), birth_year
(INT), birth_county (VARCHAR)

ACTED_IN: actor_id (INT), movie_id (INT)

Movie: movie_id (INT), movie_name (VARCHAR),
release_year (INT), ratings (REAL), genre (VAR-

CHAR)

In order to find the birth country of an actress named "Jane Doe",
we would use the following Cypher query:

MATCH (a:Actor)
WHERE a.actor_name = "Jane Doe"
RETURN a.actor_name, a.birth_country

The corresponding SQL code is very similar to the Neo4j query
with only slight difference in naming of the keywords:

SELECT a.actor_name, a.birth_country
FROM Actor AS a
WHERE a.actor_name = "Jane Doe"

Now that we have shown a simple example, we will examine an
example that shows the strength of Neo4j in dealing with data that
has a graph structure. The following query will find the number of
comedy movies that each actor has acted.

MATCH (m:Movie {genre:"Comedy"})-[:ACTED_IN]-(a:Actor)
RETURN a.actor_name, COUNT(m.movie_id) AS count_movie

Here we can see clearly the relationship of actors and movies in
the Neo4j, and compared to the SQL query, Neo4j does not require
any JOIN or GROUP BY keywords, and only use pattern matching
to find actors who acted in a "Comedy" movie. On the other hand,
the equivalent SQL query is more complex as it requires joining
three tables and grouping by the actor name:

SELECT a.actor_name, COUNT(m.movie_id) AS count_movie
FROM Actor AS a

JOIN Acted_IN AS act ON (a.actor_name = act.actor_name)
JOIN Movie AS m ON (act.movie_id = m.movie_id)

WHERE m.genre = "Comedy"

GROUP BY a.actor_name

4 Methods

In this section, we first describe the data collection and handling
process (Sections 4.1, 4.2 and 4.3), and then we present an example
of a student solving a homework problem. In Section 4.5, we discuss
how we categorized students’ submissions.

4.1 Data Collection

The data was collected by parsing homework submissions made by
students taking an upper-lever Computer Science course in a large
public U.S. university. Students submit their assignments on an
online homework and exam platform, which we will call OHEP for
anonymization purposes [5]. The students are allowed unlimited
number of submissions for homework problems without penalties,
and the highest score of all submissions will be recorded as the final
score. Students can also solve the problems in any order and can
return to any of the problems at any time before the deadline of
submissions.

There are 10 problems in the Neo4j homework. Each question
offers students the description of the graph database used in the
problem, including the name and the attributes of the nodes and
relationships, but students are not able to view the values stored
in the database. Students are also able to see the description of the
desired result and the format requirements for the result.

Students then can type in their queries in an online text editor
and either save their code to finish later or directly submit their
code. In the latter case, their submitted queries will be assessed
by an auto-grader that is connected to an online Neo4]J database.
If the queries have syntactic errors, the Neo4j status codes and
error messages will be sent back to students to notify them about
the errors. The Neo4j engine may also return error messages with
the expected correct syntax for some operators. If the queries can
be executed successfully but have semantic errors, the students
will receive messages showing the actual results and the expected
results. Otherwise, students will receive full points on the problem.
Instructors will assign teaching assistants to double check submis-
sions of students to make sure no hard-code queries were submitted
(i.e., queries that use irrelevant/unnecessary conditions to match
the expected results). We analyze data from student submissions
from the Fall 2019 and Spring 2020 offerings of a database course,
which is divided to four modules:

o data models and query languages

o relational database design

o relational database system internals
e advanced database topics

In the data models and query languages module, students learn
about SQL and MongoDB, and then Neo4;j. They learn about label
property graph data model and the Cypher query language (Neo4;j)
in two class meetings, and they have two activities (5 problems each)
to finish in class and one homework (10 problems) to finish after
classes. We analyze 40,093 submissions written by 518 students.

4.2 Data Handling

Each submission records is assigned with a numeric identification
numbers by OHEP in order to protect students’ privacy. Graduate
and undergraduate research assistants are also trained to deal with
research data following the research protocols; research assistance
who took the course were not given access to any of the data until
after it was anonymized.

It is also worth mentioning that the authors of this paper include
a former student in this course and the instructor of this course, and
so the interpretation of the data is informed by empirical teaching

experiences from the instructor and the learning perspectives from
the student.

4.3 Overview of Homework Assignments

The ten problems are designed following topics to design:

(1) Querying Nodes and Relationships (2 questions)
(2) Shortest Path (1 question)
(3) Advanced Pattern Matching (1 question)
(4) MERGE with ON MATCH, ON CREATE Statements (1 question)
(5) Update with FOREACH (1 question)
(6) Simple Aggregation (1 question)
(7) Advanced Aggregation using collect() (1 question)
(8) Advanced Combined Queries(1 question)
(9) Advanced Combined Queries, UNION (1 question)
The order of the questions also follows the order of the course
logic in class.

4.4 The Journey of a Student Solving a Neo4]
Problem

We here demonstrate how a student solve a Neo4] homework ques-
tion. The question we chose was designed by the instructor to assess
how students use the WITH clause to pipeline filtered aggregation
results from one part of the query to the next [25]. The prompt for
this question showed the requirement for completing this assign-
ment without explicitly pointing out the recommended clauses to
finish the question, motivating students to find the suitable Cypher
clauses to use:

Given a Graph Database with two kinds of nodes:
Movie and Actor, find movie genres with an average
rating greater than or equal to 4. When calculating the
average, only movies released later than 2000 should
be included. Return the genre and its average rating
avg_ratings in a descending order of avg_ratings.

The student began by writing the following query:

MATCH (m1:Movie)

WHERE m1.release_year > 2000
WITH avg(ml.rating) as avgrat
RETURN m1.genre, avgrat

The student’s first submission has the following error:

SyntaxError: Variable ‘ml1’ not defined (line 4, column
8).
The error message indicates that the student mistakenly reference
the variable ‘m1” in the RETURN clause without mention it in the WITH
clause. This is a very common mistake for students to encounter
when they use the WITH clause (see Table 6).

The student tried eight submissions to get around this error, and
finally realized that the error can be fixed by adding schema of ‘m1’
into the WITH clause:

MATCH (m1:Movie)

WHERE m1.release_year > 2000
WITHm1.genre, avg(ml.ratings) as avgrat
WHERE avgrat >= 4

RETURN m1.genre, avgrat

Result
Correct Solution

Percentage

24% (9359)
46% (17964)
30% (11664)
Table 1: Breakdown percentages of results in all Students’
submissions

Semantic Error

Syntactic Error

However, the submission received another error:
SyntaxError:Expression in WITH must be aliased (use AS).
This error happens because the code did not specify the name for
the ‘m1.genre’ for the result generated by WITH clause. This error
is also very common (see Table 6). After fixing this issue, the student
encountered another semantic mistake as the student forgot to sort
the result. Finally, after another five trials the student successfully
solved the question with the following query:

MATCH (m1:Movie)

WHERE m1.release_year > 2000

WITH m1.genre as movgen, avg(ml.ratings) as avgrat
WHERE avgrat >= 4

RETURN movgen, avgrat

ORDER by avgrat DESC

This realistic walk-through shows how a typical student might
go through a homework problem.

4.5 Submissions Categorization

We partition student submissions into three categories: syntactic
errors, semantic errors, and correct solutions (defined by Ahadi et
al. [2]). Syntactic errors messages are returned by the Neo4j engine
because the submitted code cannot be run; semantic errors occurred
when the submitted code can be run, but the returned result does
not match the expected result. A correct solution is when the query
executes, and the returned result matches the expected result. Ta-
ble 1 shows the percentages for the results of students’ submissions.
In this paper, we will mainly examine syntactic errors for students’
submissions and leave analyzing semantic errors to later studies.

Table 2 breaks down the syntactic errors based on the status
codes and show the frequency of those errors based on students’
submissions. Therefore, we categorize syntactic errors using the rea-
sons given by the Neo4j engine to further analyze the distributions
and variations of students’ common errors.

5 Results & Discussion

One way to show which types of questions are more difficult
for students would be to look at the percentage of students who
successfully completed each problem. But this is infeasible for us
because almost every student in our data set successfully completed
every problem (see Table 3), casusing major ceiling effects. Instead,
we use the number of attempts that students took to solve each
problem, as well as the median time between the student’s first and
last submission (see Table 4), to try to understand which types of
questions were more difficult. In Table 3, the distribution of submis-
sions is about even across every question except the questions about
"Advanced Combined Aggregation” that have higher submissions.
Those concepts require students to use WITH or UNION keyword to
combine two sub-queries together.

Error Category Neo4j Status | Number| Percent
Code of Sub- | of All

mis- Errors
sions

Semantic Error N/A 17964 46%

Invalid Input SyntaxError 4438 11%

Variable Name Unde- || SyntaxError 2690 7%

fined

Type Error TypeError 698 2%

Expression in WITH || SyntaxError 542 1%

Must Be Aliased

Invalid Use of Function || SyntaxError 488 1%

Under This Context

All Sub queries in a || SyntaxError 438 1%

UNION Must Have the

Same Column Names

Cannot Use the Same || SyntaxError 428 1%

Relationship for Multi-

ple Patterns

Cannot Access Vari- || SyntaxError 300 1%

ables Declared Before

the WITH/RETURN

RETURN Not Used Cor- || SyntaxError 283 1%

rectly

Unexpected End of In- || SyntaxError 239 1%

put

Table 2: Breakdown Percentages of All Errors & Correspond-
ing Neo4j Error Status Code Categorization

Table 4 shows the specific statistics corresponding to each con-
cept. The order of the concepts are corresponding to the order they
were presented to students. We calculated students’ duration to
finish each concept based on the time between their first submis-
sion time and final submission time. Due to constraints in the way
we collected our data, we have no way of knowing how long each
student actually spent working on each problem, only the time
at which they made each submission. Based on the learning and
teaching experience from the authors, for questions with a median
time to finish of greater than 100 minutes, we find it extremely
unlikely that students worked for this entire time; rather, we think
it likely that the student was unable to solve the problem, left, and
started working on it again later when they were able to receive
assistance. Also, from this table we can clearly see that on most con-
cepts, comparatively longer median time students spent to finish
each question, the lower the correctness they have and the lower
overall distribution of syntactic errors for the overall corresponding
submissions.

Table 5 shows the breakdown percentages of all syntactic errors.
Aside from generic errors (e.g. Invalid input, Undefined variables,
and Type errors), the most common syntactic errors were Neo4;j-
specific (e.g. usage of WITH and UNION), indicating that students
have difficulty with Neo4j-specific concepts.

Table 6 shows the distributions for each errors for each concept.
One intriguing fact is the spiking after the ‘Simple Aggregation’
for the undefined error (the second biggest error). In Section 4.4,
we once proposed that the ‘Variable name undefined’ errors often

Concept # Submissions | # Attempted Questions | # Completed Questions
Simple Querying Nodes and Relationships 3951 518 507
Advanced Querying Nodes and Relationships 4259 518 507
Shortest Path 3401 516 509
Advanced Pattern Matching 3715 516 500
Graph Update with ON MERGE, ON CREATE 2338 516 514
Graph Update with FOREACH 2683 517 511
Simple Aggregation 2702 512 506
Advanced Combined Queries, UNION 5226 512 506
Advanced Aggregation 6735 511 497
Advanced Aggregation using collect() 3977 510 507
Table 3: Number of Submissions per Question
Concept Median Time to Correct | Syntactically Wrong | Semantically Wrong
Finish (Hours:Minutes)
Simple Querying Nodes and Relationships 0:51 22% 20% 57%
Complex Querying Nodes and Relationships 1:09 23% 25% 53%
Shortest Path 1:35 26% 29% 45%
Advanced Pattern Matching 3:56 26% 28% 46%
Graph Update with ON MERGE, ON CREATE 0:26 43% 31% 26%
Graph Update with FOREACH 0:28 34% 46% 20%
Simple Aggregation 0:37 33% 36% 31%
Advanced Combined Queries, UNION 4:31 19% 35% 46%
Advanced Aggregation 3:07 14% 25% 61%
Advanced Aggregation using collect() 0:30 24% 33% 44%

Table 4: Breakdown of errors by Neo4j concept evaluated

occurs when students first start to use WITH and forget to reference
all variables that needs to be used in the RETURN or in WHERE clause.
We believe that the spikes actually represent this common error,
because only in the last four concepts this error jumps to be the
biggest error, and all those questions are usually completed via
the usage of WITH. From our learning and teaching experiences,
we suspect that this is because of the less-intuitive design of how
to filter aggregation results in Neo4;j: students have to use WITH
to select aggregation results in order to filter it later in the WHERE
clause, but from what we observe in students’ submissions, we
find out students tend to directly use WHERE clause to filter the
aggregation results directly.

The climax of the number of occurrences in Table 6 we can
see its spike in the first concept that requires the use of ‘WITH’
and only barely afterwards even though all the following concepts
require the advanced usage of ‘WITH’. As mentioned in section 4.4
as well, this error occurs when students forget to give the newly
manipulated result a new name (schema). This is a straight-forward
error that students tend to forget when they first use WITH clause;
but once they have encountered such error, they learn to rename it
in later queries.

6 Limitations & Future Work

In this paper we only utilize the homework submissions to spec-
ulate students’ learning behaviors instead of using test submissions
due to the lack of sufficient data. Because we cannot ensure that
students use what kind of techniques to finish their homework
assignments, the reliability of the data needs to be further validated.
The data source is also only coming from one university and one

course, which makes the data less universal and may be limited to
the design deficiency of the courses and the programming levels
of the university students. There are only one to two questions de-
signed for each concept, makes it harder to compare and speculate
the difficulty rates for each concepts in Neo4j, as the results might
be greatly affected by the wording of the questions. In the future,
we can further design the course content to serve the purpose of
comparison between students’ performances in different classes.

Another limitation is the ceiling effects discussed in the previ-
ous section. Because the overall percentage of correctness among
students are so high, failed numbers may be affected be random
factors such as individual’s learning preferences. We also only ana-
lyze based on error messages without investigating the students’
submissions, which makes us unable to sufficiently understand the
semantic errors. More qualitative analysis of submissions, as done
by Ahadi et al. for SQL [4], could give greater insight into student’s
semantic errors. For future work, it would also be very intriguing
if we could partition the students based on their final grades in this
course and study their learning behaviors separately in comparison,
which may lead to further discussions on the correlation between
how students learn through their mistakes and how they perform
on the overall course content, providing educators with more in-
sights. We could also use a qualitative approach to interview with
several students in the course, asking them to talk aloud through
their thought processes while solving the homework problems. This
would give great insights into why students make the mistakes that
they do.

Error (Neo4j) % of all Syntactic Errors

Invalid Input 38%

Variable Name Undefined 23%

Type Error 6%

Expression in WITH Must be Aliased 5%

Invalid Use of Function Under This Context 4%

All Sub Queries In an UNION Must Have the Same Column Names 4%

Cannot Use the Same Relationship for Multiple Patterns 4%

Cannot Access Variables Declared Before the WITH/RETURN 3%

RETURN Not Used Correctly 2%

Unexpected End of Input 2%

Unknown Function 2%

Table 5: Syntactic Error Percentages
Concept (Neo4j) Invalid | Variable | Type | Expression| Invalid All Sub | Cannot Use | Cannot RETURN
Input | Name Error | in WITH | Use of | Queries in an | Same Rela- | Access not Used
Unde- Must Be | Function | UNION Must | tionship for | Variables De- | Cor-
fined Aliased Under Have the | Multiple clared Before | rectly
This Same Column | Patterns the WITH /
Context Names RETURN

Simple Query- || 503 120 18 31 4 0 3 17 36
ing Nodes and
Relationships
Advanced Query- || 620 152 7 10 2 12 48 1 24
ing Nodes and
Relationships
Shortest Path 549 68 53 3 1 0 4 11
Advanced Pattern || 339 194 31 38 6 5 236 18 17
Matching
Graph Update || 456 89 71 0 0 2 0 0 14
with ON MERGE, ON
CREATE
Graph Update with || 531 196 305 6 32 1 0 7 6
FOREACH
Simple Aggregation || 235 287 64 235 40 3 0 69 15
Advanced Com- || 424 592 49 101 226 189 25 71 66
bined Queries,
UNION
Advanced Aggrega- || 474 591 52 78 113 6 83 72 20
tion
Advanced Ag- || 307 401 48 40 64 220 33 41 74
gregation using
collect()

Table 6: Error submissions per Concept

7 Conclusion

There has been almost no research up to this point on graph-
database education. In this paper, we build on our previous work
on SQL database learning to understand how student learn graph
databases. We use over 40 thousands students’ submissions to ana-
lyze syntactic errors students encounter while solving Neo4] home-
work problems. Our analysis shows that students often spends
longer time trying to finish questions that involve complex Cypher
constructs that they are not familiar with. Students often encounter

difficulties in understanding the syntax of WITH, even after working
through multiple questions requiring this construct.

References

[1] Feb, 2020. Graph Database Market By Product Type (Resource Description Frame-
work and Property Graph), and By Application (BFSL IT & Telecom, Healthcare &
Life Sciences, Transportation & Logistics, Retail & Ecommerce, Government & Public,
and Others): Global Industry Perspective, Comprehensive Analysis, and Forecast,
2019 - 2026. https://www.fnfresearch.com/graph-database-market-by-product-
type-resource-description

Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.
2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and Its Application to Predicting Students’ Success. In Proceedings of the

[2

https://www.fnfresearch.com/graph-database-market-by-product-type-resource-description
https://www.fnfresearch.com/graph-database-market-by-product-type-resource-description

=

47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 401-406. https://doi.org/10.1145/2839509.2844640
Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-
titative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE °15). ACM, New York, NY,
USA, 201-206. https://doi.org/10.1145/2729094.2742620

Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Stu-
dents’ Semantic Mistakes in Writing Seven Different Types of SQL Queries.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 272-277.
https://doi.org/10.1145/2899415.2899464

Anonymous. 2015. Paper Describing an Online Learning System.

Anonymous. 2018. Database Systems. http://link.to.course.webpage.com/
Anonymous. 20XX. Paper analyzing student’s SQL homework solutions.
Claude. Berge. 1962. The theory of graphs and its applications / by Claude Berge ;
translated by Alison Doig. Methuen ; Wiley London : New York. x, 247 p. : pages.
Peter Brusilovsky, Sergey Sosnovsky, Michael V. Yudelson, Danielle H. Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL Programming with
Interactive Tools: From Integration to Personalization. ACM Trans. Comput. Educ.
9, 4, Article 19 (Jan. 2010), 15 pages. https://doi.org/10.1145/1656255.1656257
Mike Buerli and CPSL Obispo. 2012. The current state of graph databases. De-
partment of Computer Science, Cal Poly San Luis Obispo, mbuerli@ calpoly. edu 32,
3 (2012), 67-83.

E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (June 1970), 377-387. https://doi.org/10.1145/362384.362685
Susan Davidson. 2020. Data Management in the Cloud. https://
www.seas.upenn.edu/~cis550/

Maria del Pilar Angeles. [n.d.]. NoSQL systems. https://www.coursera.org/learn/
nosql-databases

Diogo Fernandes and Jorge Bernardino. 2018. Graph Databases Comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4], and OrientDB.. In DATA. 373-
380.

Brad Fowler, Joy Godin, and Margaret E Geddy. 2016. Teaching Case: Introduction
to NoSQL in a Traditional Database Course. J. Inf. Syst. Educ. 27 (2016), 99-104.
José Guia, Valéria Gongalves Soares, and Jorge Bernardino. 2017. Graph Databases:
Neo4j Analysis. In ICEIS.

[17] José Guia, Valéria Gongalves Soares, and Jorge Bernardino. 2017. Graph Databases:

Neo4j Analysis.. In ICEIS (1). 351-356.

Amarnath Gupta. [n.d.]. Graph Analytics for Big Data. https://www.coursera.org/
learn/big-data-graph-analytics

Dimitrios Kotsifakos, Dimitrios Magetos, Alexandros Veletsos, and Christos
Douligeris. 2019. Teaching the Basic Commands of NoSQL Databases Using
Neo4j in Vocational Education and Training (VET). European Journal of Engi-
neering Research and Science CIE (Apr. 2019), 13-18. https://doi.org/10.24018/
ejers.2019.0.CIE.1291

David Maier Kristin Tufte. 2014. Data Management in the Cloud. http:
//datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index

[21] Josep Lluis Larriba-Pey, Norbert Martinez-Bazan, and David Dominguez-Sal.

2014. Introduction to Graph Databases. Springer International Publishing, Cham,
171-194. https://doi.org/10.1007/978-3-319-10587-1_4

Joao Ricardo Lourenco, Bruno Cabral, Paulo Carreiro, Marco Vieira, and Jorge
Bernardino. [n.d.]. Choosing the right NoSQL database for the job: a quality
attribute evaluation. 2, 1 ([n.d.]), 18. https://doi.org/10.1186/s40537-015-0025-0
Justin J Miller. 2013. Graph database applications and concepts with Neo4j.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324.

Sriram Mohan. 2018. Teaching NoSQL Databases to Undergraduate Students:
A Novel Approach. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 314-319. https://doi.org/10.1145/3159450.3159554

Neo4j, Inc. 2019. Neo4j. https://neo4j.com/

Rabi Prasad, Padhy Manas, Ranjan Patra, and Suresh Chandra Satapathy. 2011.
RDBMS to NoSQL: Reviewing Some Next-Generation Non-Relational Database’s.
, 15-30 pages.

Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A
Survey and Assessment. ACM Comput. Surv. 13, 1 (March 1981), 13-31. https:
//doi.org/10.1145/356835.356837

Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. 2010. A Comparison of a Graph Database and a Relational Data-
base: A Data Provenance Perspective. In Proceedings of the 48th Annual Southeast
Regional Conference (ACM SE °10). Association for Computing Machinery, New
York, NY, USA, Article 42, 6 pages. https://doi.org/10.1145/1900008.1900067

https://doi.org/10.1145/2839509.2844640
https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1145/2899415.2899464
http://link.to.course.webpage.com/
https://doi.org/10.1145/1656255.1656257
https://doi.org/10.1145/362384.362685
https://www.seas.upenn.edu/~cis550/
https://www.seas.upenn.edu/~cis550/
https://www.coursera.org/learn/nosql-databases
https://www.coursera.org/learn/nosql-databases
https://www.coursera.org/learn/big-data-graph-analytics
https://www.coursera.org/learn/big-data-graph-analytics
https://doi.org/10.24018/ejers.2019.0.CIE.1291
https://doi.org/10.24018/ejers.2019.0.CIE.1291
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
https://doi.org/10.1007/978-3-319-10587-1_4
https://doi.org/10.1186/s40537-015-0025-0
https://doi.org/10.1145/3159450.3159554
https://neo4j.com/
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/356835.356837
https://doi.org/10.1145/1900008.1900067

	Abstract
	1 Introduction
	2 Literature Review
	3 Introduction to Neo4j and Cypher
	4 Methods
	4.1 Data Collection
	4.2 Data Handling
	4.3 Overview of Homework Assignments
	4.4 The Journey of a Student Solving a Neo4J Problem
	4.5 Submissions Categorization

	5 Results & Discussion
	6 Limitations & Future Work
	7 Conclusion
	References

