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ABSTRACT
Pointer arithmetic is a core feature of the C programming lan-
guage and C program analysis is impossible without an under-
standing of its effects. Many program analyses opt to be unsound
in the presence of pointer arithmetic or preserve soundness at the
cost of precision. However, the number of operations that can
be performed safely on pointers is actually quite small. As was
observed by Might et al. [11], these few operations can be pre-
cisely modeled with a simplified Peano arithmetic. This paper
presents an interpreter that uses a memory model based on this
arithmetic. It desugars C programs to a simple imperative lan-
guage using standard semantics-preserving techniques to simplify
the interpretation. The result is a prototype analysis that rea-
sons precisely about memory safety in full C programs without
programmer annotations.
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1. INTRODUCTION
Pointer arithmetic is an essential part of the C programming lan-
guage but is a hobgoblin of program analyses. By manipulating
pointers, programmers have fine-grained control over their soft-
ware. However, errors in pointer arithmetic can be both catas-
trophic and difficult to find. Pointer arithmetic errors are es-
pecially difficult to find in a static analysis, where conventional
abstractions for reasoning about values do not naturally capture
pointer behavior. Several of these analyses are described in Sec-
tion 5.

Although pointers may be used in many ways, the number of safe
pointer operations that do not rely on a particular implementa-
tion of the C language is quite small. Many pointer operations
rely on detailed information external to the C specification; in a
classic turn of phrase, this is “unwarranted chumminess with the
compiler” [10].

Motivated by this observation, Might et al. [11] present a model
of memory based on a simplified Peano arithmetic that is suitable
for reasoning about C pointers. This arithmetic uses successors as
in Peano arithmetic but defines only addition and subtraction. By
defining successors and predecessors so that separately allocated
regions of memory are unrelated, the memory model permits only
safe pointer operations.

This work presents YAAM, an interpreter that implements the
memory model of Might et al. [11]. It uses the CESK [6] semantic

1 #include <stdio.h>

2
3 void f(int *x) {

4 printf("0x%x\n", *(x+3));

5 }

6
7 int main(void) {

8 long s[2];

9 s[0] = 0xEFBEADDE00000000;

10 s[1] = 0xFFFFFFFF03020100;

11 int *p = (int *)&s;

12 f(p + 0); // safe

13 f(p + 1); // unsafe

14 return 0;

15 }

Figure 1: Safe and unsafe pointer arithmetic on an array

model, allowing it to be systematically transformed into an ab-
stract interpreter [13, 9]. YAAM is capable of executing programs
as defined by the C99 standard [1]. YAAM can reason soundly
and precisely about pointer arithmetic and can identify unsafe
memory accesses. Although YAAM does perform a concrete in-
terpretation, it was built with the intention to later perform a
static analysis through abstraction.

The contributions of this work are:

• A C interpreter based on the memory model of Might et
al. [11] that can be lifted to an AAM-style abstract inter-
preter.

• A demonstration that this memory model permits precise
and permissive reasoning about pointer arithmetic.

The structure of this paper is as follows: Section 2 elaborates on
the problem to be solved with specific examples. Then, Section 3
gives a brief formal presentation of the analysis. Section 4 dis-
cusses preliminary empirical results in the form of a case study.
Section 5 follows with a summary of relevant related work. Fi-
nally, Section 6 concludes.

2. EXAMPLE
Figure 1 and Figure 2 demonstrate pointer arithmetic in two
forms. The program in Figure 1 manipulates bytes in an array



1 #include <stdio.h>

2
3 struct A{

4 int x;

5 int y;

6 int z;

7 };

8
9 struct B{

10 int x;

11 int y;

12 };

13
14 void f(void* a, int offset ){

15 printf("0x%x\n", *((int*)a + offset ));

16 }

17
18 int main (){

19 struct A first = {1,2,3};

20 struct A second = {4,5,6};

21 struct B third = {7,8};

22 int* a = (int*)& first;

23 int* b = (int *)&( first.z);

24 int offset = b - a;

25 f(&second , offset ); // safe

26 f(&third , offset ); // unsafe

27 return 0;

28 }

Figure 2: Safe and unsafe pointer arithmetic on structs
with different sizes

and the program in Figure 2 calculates offsets to fields in structs.
Both programs allocate memory in one function, add an offset of
some sort, and read from memory. Each program demonstrates
both a safe memory access and an unsafe memory access. These
examples assume longs and ints are 8 and 4 bytes respectively.

Differentiating between safe and unsafe reads of this variety can
be difficult to accomplish programmatically. Näıve type systems
are ill-equipped to reason about reinterpretations of data. Addi-
tionally, classical static analyses are intraprocedural; as a result,
they tend to be imprecise with respect to aliasing.

Abstract interpretation can address both of these limitations. An
interprocedural abstract interpretation can reason soundly about
aliasing [5, 8]. Moreover, an abstract domain based on simplified
Peano arithmetic can address byte reinterpretation between inte-
gers and pointers. While its precision is necessarily limited, it can
be sufficiently precise to yield useful results.

The remainder of this section describes the memory model intu-
itively. Section 3 presents it formally.

Ordinary stack variables have no specified successors or prede-
cessors; their location with respect to each other is not speci-
fied. However, regions of memory allocated (e.g., with malloc)
are guaranteed to be contiguous. Accordingly, allocation causes
the successor and predecessor maps to update the address for each
byte allocated so that it is related to its neighbors. Addresses on
either end are related to special addresses for overflow and under-
flow.

In Figure 1, line 8, YAAM allocates memory for an array with

prgm ∈ Prgm := [vdecl | fdecl | sdecl | td ]∗

td ∈ TD :=typedef type id ;

sdecl ∈ Sdecl :=struct id { [type id ;]∗ };
vdecl ∈ Vdecl :=id = rvalue;

decl ∈ Decl :=type assign

assign ∈ Assign :=lvalue = rvalue;

lvalue ∈ Lvalue := [*]?id

rvalue ∈ Rvalue := [cast ]? [ae | bexp | uexp]

cast ∈ Cast :=(type)

ae ∈ AE =ID + Literal

bexp ∈ BExp :=ae binop ae

uexp ∈ UExp :=unop ae

fdecl ∈ Fdecl :=type id( [type id [, type id ]∗]?) { [stmt ]∗ }
stmt ∈ Stmt := [label :]? lvalue = rvalue;

| [label :]? if (ae) stmt [else stmt ]?

| [label :]? goto label ;

| [label :]? [lvalue =]?id( [ae [, ae]∗]?);

|{ [stmt ]∗ }

Figure 3: Surface syntax for desugared C language

two longs as a single region of size 16. YAAM stores the pointer
p as a pointer to the beginning of s and can now read s one byte
at a time, beginning at p. It does so using the successor map. An
8-byte read on p with an offset of 8 bytes (line 12) will be safe
because 16 successors are defined for s. However, beginning an
8-byte read at an offset of 12 bytes (line 13) will move the pointer
beyond the allocated region.

For Figure 2, YAAM applies the same offset (line 24) to two point-
ers to structs A and B, which have different sizes, by using the
same method. YAAM safely reads struct second on line 25 be-
cause the pointer passed to f is incremented to second.z (line 6)
and second is sufficiently large. YAAM finds the unsafe read (line
26) in struct third because the pointer to third is offset beyond
the end of the memory allocated for third.

3. CONCRETE INTERPRETATION
Instead of interpreting C directly, YAAM desugars C programs
to the language given in Figure 3. This language lacks complex
expressions, arrays, struct references, etc. Instead, it uses simple
expressions with temporary variables and byte-addressed pointer
arithmetic. All casts are explicit. The semantics of this lan-
guage are easily understood and formalized. However, since the
desugared code is still C, it is easy to preserve certain high-level
language constructs if their semantics help simplify a given anal-
ysis. For example, it can keep OpenMP constructs intact to help
simplify analyses of concurrent programs.

YAAM’s semantics are based on the CESK machine [6], a powerful
general-purpose semantic model that represents explicit states as
tuples of control (C), environment (E), store (S), and continuation
(K). As a result, they can be systematically transformed into an
abstract interpreter [13] and optimized [9]. The CESK state space
used in YAAM is given in Figure 4.

3.1 Memory model



ς ∈ Σ = Stmt × E ×K

e ∈ E = Var ⇀ A

σ ∈ S = A ⇀ Val

κ ∈ K = Stmt ×K

val ∈ Val = A + Z

a ∈ A = Z+

l ∈ L = {byte, short, int, long}
var ∈ Var = the set of variables in the program

stmt ∈ Stmt = the set of statements in the program

Figure 4: CESK state space

This section summarizes the memory model of Might et al. [11].
Memory is allocated as some number of contiguous bytes. The C
specification does not specify where the region lies in memory with
respect to other memory regions [1]. For example, the execution
of malloc(n) returns a pointer to the beginning of a region of
n contiguous bytes. No information is available regarding what
comes before this pointer or more than n bytes after this pointer.

Allocation is defined with a successor map σ+ and a predecessor
map σ−. To allocate n bytes, fresh addresses a1, a2, . . . , an are
each pointed to a byte in the newly allocated space. σ+ is updated
so that σ+ (a1) = a2 and so on. Similarly, σ− (a2) = a1. Formally,

σ′+ = σ+ [a1 7→ a2, . . . , an−1 7→ an, an 7→ a>]

σ′− = σ− [an 7→ an−1, . . . , a2 7→ a1, a1 7→ a⊥] .

The overflow address a>, the underflow address a⊥, the null ad-
dress null , and the undefined pointer > are all unsafe; reading
from or writing to these pointers leads to an error state. Univer-
sally, σ+ and σ− map unsafe pointers to >.

For convenience, the predicate safe is defined over pointers:

safe (p) ≡ p /∈ {a>, a⊥,null ,>} .

3.2 Peano arithmetic for pointers
Given σ+ and σ− for addresses, it is possible to compute the result
of valid pointer arithmetic using a simplified Peano arithmetic
that contains addition and subtraction but not multiplication.
Operations such as multiplication and division always result in
an unsafe pointer. Addition and subtraction of an integral value
to a pointer are performed by calling the predecessor or successor
map repeatedly. The difference of two pointers results in a integer
offset that is equal to the number of steps in the σ+ or σ− map
it takes to reach the other. Because all pointers are desugared
to byte pointers, no type information is required to add to them.
The arithmetic is shown in Figure 5, where p is a pointer, n is an
integer, and σ∗+ is the transitive closure of σ+.

Because Peano arithmetic was used in conjuction with the suc-
cessor and predecessor maps, disjoint regions are unreachable by
pointer arithmetic. This separation allows for the detection of
unsafe pointer arithmetic that might rely on a compiler specific
allocation scheme. In many cases, this permits precise reason-
ing even after arithmetic or aliasing has obfuscated the pointer.

p+ n ≡ n+ p ≡


σ+ (p) + (n− 1) n > 0

p n == 0

σ− (p) + (n+ 1) n < 0

p− n ≡ p+ (−n)

p1 − p2 ≡


0 p1 == p2

(σ+ (p1)− p2) + 1 p1σ
∗
+p2

(σ− (p1)− p2)− 1 p2σ
∗
+p1

> otherwise

p± p ≡ n− p ≡ >

Figure 5: Peano Pointer Arithmetic

However, there are limitations to its precision; the shared overflow
address cannot have a safe predecessor. In a concrete system, it is
possible to reason precisely about such a reversal, but abstraction
makes this impossible to do generally. Similarly, it is possible to
coerce a pointer to an integral value and perform a series of mul-
tiplications, divisions, etc. that transforms it to something safe.
However, this is, at best, a software development practice that is
not encouraged.

3.3 Concrete semantics
With the memory model, it is possible to articulate the semantics
of the interpreter. Pointer safety is formalized with a predicate
safe, which evaluates whether or not a pointer is safe based on
the definition given in Section 3.2. A region of memory beginning
at p that contains n bytes is safe if the pointer to each byte in the
region is safe. Formally, this is expressed with safer:

safer (p, n) ≡ n = 0 ∨ (safe (p) ∧ safer (p+ 1, n− 1)) .

The transition relation→⊆ Σ×Σ relates states with their succes-
sors. The state space is formalized in Figure 4. As an example, the
transition rules for assignment, specialized for assignment from a
pointer to a variable, are included here. The transition relation
makes use of n, which returns the syntactic successor to the given
statement:

σ′ = σ [e (idd) 7→ σ (p)] p = e (idp)

stmt = idd = *idp safer (p, sizeof (idd))

(stmt , e, σ, κ)→ (n (stmt) , e, σ′, κ)

stmt = idd = *idp ¬safer (p, sizeof (idd)) p = e (idp)

(stmt , e, σ, κ)→ error

3.4 Abstracting the memory model
In order to build an abstract interpreter from this concrete inter-
preter, the CESK state space can be lifted to an abstract state
space. This means that the addressing scheme must be changed
so that addresses come from a finite set and the successor func-
tion updated accordingly. This can be accomplished using any
abstraction function α : Z+ → Ẑ+ such that Ẑ+ is finite. The ab-
stract successor function σ̂+ is induced from α and σ+ (as is the
abstract predecessor function σ̂− from α and σ−). One possible



definition for α is modular arithmetic: α (n) = n (mod m). As
with any abstract domain, it is defined on a join-semilattice. In
the case of modular arithmetic, the join of any two distinct values
is >.

Regardless of the definition of α, memory allocation is as ex-
pected. When n bytes are allocated, a series of n adjacent ad-
dresses is selected from Ẑ+. The stores are updated (weakly, so
that existing values are joined with new values) as follows:

σ̂′+ = σ̂+ t [α (a1) 7→ α (a2) , . . . , α (an−1) 7→ α (an) , α (an) 7→ a>]

σ̂′− = σ̂− t [α (an) 7→ α (an−1) , . . . , α (a2) 7→ α (a1) , α (a1) 7→ a⊥]

Because all other aspects of the CESK space are standard, they
become parts of an abstract interpreter using the system presented
by Van Horn and Might [13].

4. EMPIRICAL STUDY
A concrete interpreter, YAAM, was used to verify the memory
model with a small set of benchmarks. YAAM correctly identifies
the memory access errors for the programs provided in Figure 1
and Figure 2, programs with memory access errors are labeled as
unsafe in Table 1.

4.1 Methodology
To implement YAAM the labor was divided into three main parts:
parsing, desugaring, and interpretation. Pycparser, an open source
c parser in python, was used to parse the c files into an abstract
syntax tree (AST), which can be used flexibly.

Then, a series of AST traversals desugar the AST to the grammar
shown in Figure 3. Instead of desugaring all in one go, small
changes are made one at a time such as for and do while loops
are transformed to while loops then while loops are transformed
to goto statements. Array and struct references are desugared to
pointer arithmetic, then the pointer arithmetic is reduced to byte
pointer arithmetic.

After the desugaring is complete, the interpreter traverses the
AST to find main and set up global variables, types, and functions.
Following the CESK model, YAAM creates a single state and
evaluates each state until the halt state is invoked. Since YAAM
is concrete, updates to the store are strong, and a single next
state is generated for each state evaluated; this is abstractable by
allowing for multiple next states to evaluated and bounding the
address space for frame, heap, and continuation addresses. If an
error occurs then interpretation is interrupted, and the error is
reported.

The case study was executed remotely with an Intel(R) Xeon(R)
Gold 5120 processor running at 2.20GHz using 7.7 GB of RAM,
running Ubuntu 18.04.1 LTS.

4.2 Results
Table 1 contains timing data in seconds for some simple programs.
The program in Figure 1 is called Array cast and the program in
Figure 2 is called Struct offset. The MxN Array programs simply
iterate over a multidimensional array twice, once to assign then
once more to print.

4.3 Analysis
The study shows that parsing and desugaring is relatively quick,
while interpreting dominates the execution time. As the length of
interpretation increases, the time increase is super-linear because
of the large number of states in memory.

5. RELATED WORK
This tool is based on a simplified Peano arithmetic model origi-
nally developed by Might et al. [11]. It uses the CESK [6] machine
as a semantic model, which can be systematically transformed into
an abstract interpreter [13, 9].

Balatsouras and Smaragdakis [2] present a points-to analysis for C
programs that is sound for many use cases. In their analysis, not
all language features are addressed. One such language feature
that they do not address is casting.

Cohen et al. [3] present an analysis of C programs that uses SMT
solvers to reason about the memory model. It is general and
powerful but does not preserve boundaries between regions of
memory that are allocated separately, potentially missing errors
that depend on memory allocation behavior. The SeaHorn [7]
framework uses SMT solvers to reason about LLVM bitcode trans-
formed into Horn clauses.

Conway et al. [4] reason about soundness on the assumption that
the program is memory-safe and show that several other analyses
are sound under this assumption. The memory safety analysis
they propose operates on a C-like language that lacks control flow
constructs of any variety.

Ströder et al. [12] use symbolic execution to prove memory safety
in LLVM bitcode. They ignore integer overflows and constrain
variable instantiation. Their analysis answers questions about
memory safety, as does this analysis. However, their analysis
does as many do in that it allows the layout of allocated memory
to affect the detection of unsafe memory accesses. As such, it can
be overly permissive.

6. CONCLUSION
This analyses demonstrably permits precise and permissive rea-
soning about pointer arithmetic. YAAM, being based on the
memory model of Might et all. [11], interprets arbitrary C pro-
grams, reasons soundly and precisely about pointer arithmetic,
and can identify unsafe memory accesses. Future work includes
abstraction and other transformations of the CESK model pre-
sented for the purpose of interpretation.

The empirical study shows the simplified Peano arithmetic of
Might et al. [11] allows for byte level operations to be performed
precisely. This memory model allows for verification of memory
safety. Additionally, it shows that strict aliasing of pointers is not
required, allowing pointers of different types to have the same ad-
dress. This proof of concept demonstrates that such an analysis
is viable on C programs, even when they use pointer arithmetic.

Being a CESK interpreter, YAAM can be systematically trans-
formed through methods presented by Van Horn and Might [13]
to an abstract interpreter. Such an abstract interpreter could not
only reason about memory accesses in C but could also be used
as a general purpose analyzer.

YAAM can also be used as the basis for an explicit state model
checker. Its search space could include inputs or, in the presence of
concurrency, schedules. It is also suitable for lightweight analyses,
such as classical k-CFA, for use on larger code bases. For example,
ongoing work includes implementation of k-CFA for verification
of security properties in OpenSSL.
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Application Parsing (s) Desugaring (s) Interpretation (s) Total time (s)

Array cast (unsafe) 0.798 0.062 0.008 0.870
Array cast 0.789 0.066 0.010 0.865
Struct offset (unsafe) 0.784 0.119 0.015 0.919
Struct offset 0.787 0.115 0.016 0.920
10x10 Array 0.947 1.003 0.371 2.322
10x100 Array 0.894 0.977 5.289 7.161
100x100 Array 0.921 1.059 248.804 250.785
100x1000 Array 0.935 0.989 20542.441 20544.366

Table 1: Empirical results from the case study
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