
Insights from Student Solutions to MongoDB Homework
Problems

Anonymous Author(s)
Abstract

We analyze submissions for homework assignments of 527 stu-
dents in an upper-level database course offered at a large U.S. public
university. The ability to query databases is becoming a crucial skill
for technology professionals and academics. Although we observe a
large demand for teaching database skills, there is little research on
database education. Also, despite the industry’s continued demand
for NoSQL databases, we have virtually no research on the matter of
how students learn NoSQL query languages, such as MongoDB. In
this paper, we offer an in-depth analysis of errors committed by stu-
dent working on MongoDB homework assignments over the course
of two semesters. We show that as students use more MongoDB
operators, they make more JavaScript-related errors. Additionally,
when students face a new functionality of MongoDB operators,
such as $group operator, they usually take time to understand it
but do not make the same errors again in later problems. Finally, our
analysis suggests that students struggle with advanced concepts in
comparable duration and effort. Our results suggest to instructors
that in order to improve their curriculum may set more time and
effort for the discussed topics in our paper.

CCS Concepts
• Applied computing → Education; • Social and profes-

sional topics→ Computer science education; • Information
systems → Information retrieval; Query representation.

Keywords
mongoDB, database education, online assessment

ACM Reference Format:
Anonymous Author(s). 2020. Insights from Student Solutions to MongoDB
Homework Problems. InWoodstock ’18: ACM Symposium on Neural Gaze
Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The evolution of big data exposed the limitations of relational

(SQL) databases. Internet giants, such as Google and Amazon, de-
veloped and used many custom-built databases to work around
the shortcomings of SQL databases. MongoDB, a cross-platform
document-oriented database that uses JSON-like documents, was
introduced in 2007 as part of this NoSQL (Not Only SQL) revolution.
Since its inception, MongoDB has gained a great reputation and has
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

become one of the most used and wanted database query languages
[15].

The flexibility of MongoDB’s semi-structured documents (Java-
Script Object Notation, JSON) and its ability to effectively scale to
distributed collections of documents made several large companies
shift from SQL to MongoDB. MongoDB provides higher scalability
and availability than its SQL-based counterparts [2]. It also allows
users to develop user-defined functions written in JavaScript as
well as write Map-Reduce programs. Map-reduce infrastructure
enables users to write distributed aggregate computations over
large, highly-distributed, volumes of data [1].

In response to the new interest in NoSQL, many universities and
educational organization have adopted curriculum that includes
NoSQL database management systems. For instance, as discussed in
Section 2, Mohan showcase their experience with teaching NoSQL
paradigms to undergraduates at Rose-Hulman Institute of Technol-
ogy [12].

Addressing the growing interest of students and instructors in
MongoDB, in this paper, we give insight about students’ experience
when learning MongoDB using a quantitative approach. We classi-
fied 76,168 submissions made by 527 students over Fall 2019 and
Spring 2020 semesters while working on homework problems at a
big Midwestern university in the United States. This contributes to
the growing literature about analyzing and understanding students’
mistakes when learning a new database language. In this paper, We
answer the following research questions:

• What concepts are difficult for students when learning Mon-
goDB?

• What common errors do students make when first learning
to query a MongoDB database?

2 Literature Review
Unlike Object-oriented and imperative programming, there is

not a lot of research about teaching students to program in database
query languages. Though there are no existing studies on the diffi-
culties encountered by students while learning to use MongoDB,
there are multiple reports of instructors including MongoDB into
their curriculum in university courses [9–12].

Guo et al. integrated MongoDB into security labs [10]. These
efforts mainly focus on how to order topics related to database
security and how to introduce some of the security drawbacks of
MongoDB’s implementation. Lei et al. [11], use MongoDB as their
NoSQL database Management system in their labs to teach the
drawbacks of NoSQL databases. Mohan reported experiences of a
database education curriculum that incorporated NoSQL [12]. In
Mohan’s work, students were exposed to several NoSQL paradigms
and had a set of projects, lab and research assignments to complete
using the knowledge they gained during the course. The course
received positive feedback from students and industry big data en-
gineers for its addressing of NoSQL paradigms. Some other NoSQL



databases have also been incoporated in university curricula. For
example, Fowler et al. reported their experience in two database
courses with teaching CouchDB, a NoSQL data management system
that uses JavaScript as its query language [9]. They mainly focused
on measuring students’ improvement of understanding NoSQL sys-
tems. Although. the previous papers include MongoDB in their
studies, but they do not study novices’ experiences or difficulties
when learning MongoDB.

Previous work in SQL education has looked at thousands of stu-
dent submission to both homework and tests to understand what
types of queries are most difficult for students to write, and what
types of errors students make the most [5, 6, 8, 16]. In this paper,
we follow their lead, giving a quantitative insight from students’ so-
lutions of MongoDB homework questions in order to find common
difficulties among novices.

3 Intro to MongoDB
MongoDB [3] is a document-oriented NoSQL database that stores

JSON-like data in documents with dynamic schema, so it can store
flexible values without fixing the number of fields or type of fields.
Wewill show examples ofMongoDB objects and some code snippets
that exhibits the basic syntax of MongoDB and the corresponding
queries in SQL with similar database schema. The ‘_id’ attribute
is an indexed attribute that every object must have, and it acts as
the object’s primary key. We will show two instances of objects
that might appear in collection titled ‘Movies’, to demonstrate the
flexibility in MongoDB, avoiding SQL’s rigid relational structure
and the need that people normally have to translate objects to
relational tables. One object in such a collection might look like:
{

"movie_id": 1,
"movie_name": "The Imitation Game",
"release_year": 2014,
"country": "USA",
"director": "Morten Tyldum"

}

And another object in the ‘Movies’ collection that doesn’t have
the information about director but has the attribute ‘ratings’,
might be:
{

"movie_id": 2,
"movie_name": "The Social Network",
"release_year": 2010,
"country": "USA",
"ratings": 7.7

}

From the two instances, we can see that the structures of the
items in a collection are similar but not identical, where MongoDB
performs greatly as it avoids more complex structure that would
be done in SQL and makes sure they can be stored in one single
collection, which avoids potential complex joins and greatly im-
prove the performances. This feature also allows the availability
and scalability for big data.

MongoDB databases can be queried from many different pro-
gramming languages, but the most straightforward interface is
querying it through a JavaScript shell, so that is what the students

are taught in our class. The following is an example of a simple
MongoDB query, written in JavaScript shell, to find the movie ids
of all horror movies in our example database.
db.Movies.find(

{ movie_genre: "Horror" },
{ _id: 0, movie_id: 1, movie_genre: 1}

)

The following code is the corresponding SQL syntax with an
analogous database that has similar attributes in the database.
SELECT movie_id, movie_genre
FROM Movies
WHERE movie_genre = "Horror"

More complex operations on data in MongoDB are done with
MongoDB operators, which start with a ‘$’ character [4]. For ex-
ample, $match is an operator that takes a specified conditions as
its inputs in order to filter and produce documents that have met
set conditions. Another example, $unwind is an aggregation oper-
ator, which takes a reference to an array and produces multiple
objects from the elements of the array. Another aggregation opera-
tor $group, which takes an _id field as its first argument, then, it
takes fields combined with accumulator operators to perform basic
operations, such as $sum, on the collection. Finally, $project is
an operator that takes fields as its arguments, then adds, renames,
excludes or includes the specified fields in the resulting collection.

Having the structure of the previous collection in mind, we
will now show an example which use the previous aggregation
operators to produce a collection. This query finds all movies in
the collection 2001, calculates their average ratings, and renames
the country field to produce_country:
db.Movies.aggregate([

{$match: {release_year: {$gte:2001}}},
{$unwind: "$country"},
{$group: {

_id: "$country",
ave_ratings: {$avg:"$ratings"}} },

{$project: {
ave_ratings:1,
"produce_country": "$_id",_id:0 } }

])

4 Data & Methods
4.1 Data Collection
The data used in this paper are from students at a large public
university. This University is research-intensive institution with
about 1,800 undergraduate Computer Science majors. The data was
collected from the Database Systems course at this university. The
Database Systems course is an elective course taken primarily by
upper-classmen full-time undergraduates and graduate students
with perquisites covering introduction to programming and data
structures. The course is structured to cover three main chapters:
data models, database management systems and query languages
(relational model: relational algebra, SQL and MySQL, graph model:
Neo4j and cypher and document-oriented model: JavaScript shells
and MongoDB), database design (conceptual design and normal
forms) and database implementation (storage and indexing, query



optimization, concurrency control). The course spends three set-
tings to introduce and study MongoDB. Our data contains submis-
sions from Fall 2019 and Spring 2020 from students in the Database
Systems course. Our sample of students was 527 students, including
64 females and 463 males students.

The students in the databases course completed their homework
using an online homework and exam platform, which we will call
OHEP for anonymization purposes [7]. Upon submitting a Mon-
goDB query in OHEP, the students were given instant feedback
from auto-graders to help them modify their MongoDB queries
to achieve the desired output. Students had unlimited number of
attempts and no constraint in what order they may approach the
questions. After close inspection of the statistics we found that the
trends in student errors and number of submissions were similar
for both semesters included in the study, so we will report them in
aggregate.

For each MongoDB problem, the students were given a general
description of the collections related to the problem. Although,
Students did not have access to the objects of the collections them-
selves. Above the description, students see the problem that their
MongoDB query should address. Students wrote their MongoDB
queries in a JavaScript MongoDB enabled shell, where they used
JavaScript as a query language.

Student had small text editor where they wrote their queries
and had the option of saving and grading them or just saving them.
When the student choices to grade their submission, the query run
against the MongoDB objects. Should the query face a JavaScript
error or a MongoDB error, it would be reported back to the student
with a descriptive message from the JavaScript MongoDB enabled
shell. If the query successfully runs, the student can see whether
they have an incorrect result set (did not receive full points) or
whether they achieved the desired output (received full points).

Also, it is worth mentioning that 2715 students’ submissions
were omitted from this study, because they had a common error
where students copied JavaScript code from online sources, causing
the interpreter to fail due to an unexpected unicode character. In
addition, we do not include question ten of the homework in our
analysis, because it was optional and not many students attempted
to solve it.

4.2 Data Handling
This studywas approved by the local Institutional Review Board. All
graduate and undergraduate researchers completed IRB-mandated
training in responsible conduct of research. As required by the
IRB, to protect students’ privacy, we assigned a unique numeric
identifier to each student.

4.3 Categorization
Prior work in understanding student struggles while writing data-
base queries with SQL have partitioned errors into different cat-
egories based on the type of error returned by the SQL engine
[6, 8, 17]. However unlike most SQL engines, which will only re-
turn a single error message to the user at a time, JavaScript shells,
which are used in executing MongoDB queries, may report any
number of errors when you run your code. This significantly com-
plicates the process of classifying student errors. In order to simplify

the process of arriving at a meaningful categorization, we chose
to classify each submission using only the first error which was
returned.

Another aspect which complicates the categorization of Mon-
goDB errors is the fact that MongoDB queries are written through
JavaScript library, rather than having its own dedicated language
like SQL or Neo4j’s Cypher query language [13, 14]. In practice,
this means that code written to query a MongoDB database could
fail on a JavaScript error before the MongoDB library code is even
invoked, or the JavaScript could run successfully, only to have the
MongoDB library return an error saying that though it is valid
Javascript, it does not comply with the particular usage rules of the
library.

Thus we arrive at a way to partition student submissions into
4 categories: JavaScript Errors, where the first error returned by
the JavaScript library comes from a JavaScript failure, rather than
from within the MongoDB library, MongoDB errors, where first
error is an error message given by MongoDB library denoting that
the query is incorrect, Incorrect result set, where the query is valid
and is executed by MongoDB, but returns an incorrect result, and
correct solutions, where the query is executed by MongoDB, and
the returned result set matches the expected result set.

4.4 Overview of Homework Assignments
The ten homework questions are designed to address the following
concepts, and students were free to move between the problems
however they wanted:

(1) Selection and projection using find() (Basic) (1 question)
(2) Selection and projection using find() (Advanced) (1 ques-

tion)
(3) Aggregation pipeline with group and project (1 question)
(4) Aggregation pipeline with match, sort, group and project (1

question)
(5) Aggregation pipeline with unwind operator (1 question)
(6) Querying arrays (1 question)
(7) Querying embedded documents (1 question)
(8) Querying linked documents using cursor (1 question)
(9) Map Reduce (1 question)
(10) Extra Credit: Map Reduce (Advanced) (1 question)

4.5 Data Overview
We will now show an example of one of the homework problems
and student solutions to that problem to demonstrate the informa-
tion that is available to us in our data set. We will be looking at
a student’s work while trying to solve the following homework
problem (the questions from Spring 2020 addressing topic (3)):

Given aMongoDB database with two collections,Movies
and Actors. For each movie genre, display the genre
and the average ratings of movies under that genre.
Your output field should only the name of the genre
(rename it as "movie_genre") and average ratings of
movies (output it as "ave_ratings").

Database Description:
Movies collection: each Movie has its unique id
($movie_id), name ($movie_name), country ($country),



director ($director), releasing date ($release_year),
ratings ($ratings), genre ($genre), and $actors [an
array of actor id([$actor_id]). Every movie is associ-
ated with only one genre and one director.

Actors collection: each actor has his/her unique id
($actor_id), name ($actor_name), and his/her birth
country ($birth_country).

One student first attemepted to answer the prompt with the
following query:
db.Movies.aggregate({

$group: {
_id: "$genre",
ave_ratings: { $avg : "$ratings"}

}
})

And they received the following feedback message:
Expected results
================
{

"movie_genre": "Horror",
"ave_ratings": 5.869565217391305

}

Actual results
==============
{

"_id": "Horror",
"ave_ratings": 5.869565217391305

}

The problem here was the student did not use the $project
operator in order to rename the _id field as movie_genre. Then,
the student came up with this MongoDB query in order to solve
the renaming issue:
db.Movies.aggregate({

$group: {
movie_genre : "$genre",
ave_ratings : { $avg : "$ratings"}

}
})

but then they received the following error message:
Error: command failed: {

errmsg : "The field 'movie_genre' must be an
accumulator object",

code : 40234,
codeName : "Location40234"

}

The problem here was the misuse of $group operator. the $group
operator takes the first argument as a field name to group the
resulting set by, then takes the following arguments to calculate the
aggregate operations on the specified fields. This is a very common
problemwhen students try to learn the functionality of $group. This
is shown in Table 4, where you can see that students experienced
this error many times on this particular question.

Category Percentage
(1) Incorrect result set 47 %
(2) MongoDB error 32 %
(3) JavaScript error 6 %
(4) Correct 14 %

Table 1: This is the General breakdown of our Catergoriza-
tion

JavaScript Error Codes Percentages
(1) Syntax error 68 %
(2) Type error 27 %
(3) Failed to parse 3 %
(4) Unknown error 2 %

Table 2: Breakdown of JavaScript error messages percent-
ages

After a few more tries, the student came up with this MongoDB
query incorporating $project operator in order to rename _id
as movie_genre. The $project operator takes the fields’ names,
and either excludes the field, or includes it in the resulting set, or
renames the field in the resulting set.

Finally, the student was able to get the correct answer:
db.Movies.aggregate({

$group: {
_id : "$genre",
ave_ratings : { $avg :"$ratings" }

}
}, {

$project: {
movie_genre: "$_id",
ave_ratings : 1,
_id: 0

}
})

5 Results

Table 1 shows the breakdown of our categorization in the left
column, and the percentages of each main category in respect
to all submissions in the right column. In this table, we see that
the majority of submissions are classified under Incorrect result
set, which accounts for 47% of all submissions. Incorrect result
set category have a variety of causes, such as students’ lack of
knowledge about some of MongoDB operators. Section 4.5 includes
one of the students’ MongoDB queries that produced an undesirable
result set by not incorporating $project in their MongoDB query.

Tables 2 and 3 show the most common JavaScript and MongoDB
errors in their right column and their percentages of appearing
among MongoDB or JavaScript errors. As can be seen in the first
row of Table 3, the most prominent MongoDB error is Reference
error, which happens when students do not address the specific
fields correctly. Hence, Reference error have different cause, such
as misspelling fields’ names or updating fields properties through



MongoDB Error Codes Percentages
(1) Reference error 60 %
(2) Field must be an accumulator object 8 %
(3) Unknown operator $and 6 %
(4) Undefined field 4 %
(5) A pipeline stage specification object must
contain exactly one field

4 %

(6) Unrecognized pipeline stage name: _id $ 3 %
(7) Unknown group operator 2 %
(8) Cannot return an array from Map Reduce 1 %
(9) Assert failed 1 %
(10) Namespace not found 1 %
(11) Unrecognized expression 1 %
(12) An object representing an expression must
have exactly one field

1 %

(13) Illegal number of arguments used in $gte. 1 %
(14) Fields’ name shouldn’t begin with ‘$’ 1 %
(15) Path option to $unwind stage should be
prefixed with a ‘$’

1 %

(16) Bad projection specification, excluding
more fields than required

1 %

Table 3: Breakdown ofMongoDB errormessages percentage-
wise

other operators and not using updated proprieties in later operators.
Furthermore, Table 4 fifth column, specifically in questions 5 to
8, shows that on more complex of a MongoDB concepts, students
have more Reference errors. Likewise, the authors previous work
shows similar students’ performance trends between advanced SQL
queries and Undefined Column errors, [8].

Table 3 reveals some problems students face when writing Mon-
goDB queries’ operators against a certain fields or operators with
or without prefixing $, specifically seen in rows 6, 14 and 15. Table 2
third entry shows students’ problems with parsing their MongoDB
queries in the JavaScript shell. Table 4 third column indicates that
Type errors spike in question 3. Type errors are associated with
students not giving the correct corresponding argument for the
written MongoDB operators. Therefore, since question 3 is the first
question that assesses aggregate operators, such as $group and
$project, students spend more time and effort getting accustomed
to the dynamics of aggregate operators.

Table 5 shows the distribution of students’ individual submis-
sions per question by median time (second column), the numbers of
submissions (third column), the number of students who attempted
the questions (fourth column) and the number of students who
completed the question (fifth column). Table 5 fourth and fifth
columns show us that most students completed each required ques-
tion. Hence, we couldn’t study the effect of students’ preference of
techniques on their ability to complete questions. Also, Table 5 con-
firms that students take more time and effort when introduced to a
new MongnDB operator, specifically question 3 , where aggregate
operators $group and $project are first assessed, have the highest
median time. The median time is calculated from our median of

students’ session duration sample for each question, where we cal-
culate sessions using the time elapsed from their first submission
and last submission for each question.

6 Discussion

In section 5, we mentioned that as students get assessed in new
MongoDB operators, they make more mistakes and need more
time to generate the expected dataset. This argument finds further
validity in Table 4. The fifth column of Table 4 indicates that ad-
vanced MongoDB queries and operators had a comparable and high
number of Reference errors.

Another student behavior we found interesting is that when
students get assessed in a new MongoDB operator, students spend
more time and effort to learn and tend to make less of that mistake
as time progress. Table 4 sixth column shows that students make the
highest number of Field must be an accumulator object in question 3,
which is the question in which the $group operator is first assessed.
Considering that the $group operator was also assessed in most of
the remaining questions (i.e., questions 4-8), the Field must be an
accumulator error appear significantly less in the later questions
since students have already solved question 3 and are now more
comfortable with the $group operator.

In addition, we observe in Table 5 that students spend comparable
time and effort when approaching advanced concepts in MongoDB,
specifically in questions 5 through 9. Also, Table 4 second and fifth
columns show that students made comparable amount of reference
errors and syntax errors in questions 5 to 9.

6.1 Limitations
For the sake of simplicity, we only considered the first appearing
error message for the student. Considering MongoDB’s integration
into JavaScript and manually inspecting some of the queries, we
noticed some JavaScript errors may cause additional error messages.
A thorough examination of all error messages may give more in-
depth insight into novices’ experience with MongoDB. Also, our
study only considered queries as individual entities, so, considering
the context of submissions, including what error messages students
received before and after the current submission, can reveal more
details about students’ difficulties when learning MongoDB.

Our paper only had two problem statements for each concept.
Hence, we couldn’t give insight about the effect of problems’ word-
ing on students’ understanding. In addition, most of students com-
pleted the question prompts and students had a plenty of time to
do the homework. This made it impossible to gauge the difficulty of
the questions by looking at completion rates, due to strong ceiling
effects. In addition, our data did not include students’ ethnic or
cultural background.

Another limitation is that we examine only the error output
of the queries, not the queries themselves. We could gain much
greater insight into why students obtained so many “Incorrect
result set” errors by doing a qualitative analysis of the code that the
students wrote. Future work could also benefit greatly from talk-
aloud interviewswith students in order to gain better understanding
of student’s though processes while writing database queries.



Javascript Errors MongoDB Errors
Syntax er-
ror (3)

Type error
(487)

Failed to
parse (9)

Unknown
error (8)

Reference
error (666)
(139)

Field must be
an accumulator
object (40234)

Unknown
operator
$and (2)

(1) Selection and projection us-
ing find() (Basic)

108 46 0 0 890 9 145

(2) Selection and projection us-
ing find() (Advanced)

672 34 3 0 1774 14 12

(3) Aggregation pipeline with
group and project

372 116 76 0 854 1250 7

(4) Aggregation pipeline with
match, group, sort and project

353 473 19 0 768 137 244

(5) Aggregation pipeline with
unwind operator

343 68 9 17 1873 150 213

(6) Querying arrays 402 122 6 0 2395 251 284
(7) Querying embedded docu-
ments

496 42 1 0 2413 42 390

(8) Querying linked documents
using cursor

428 216 46 0 2150 100 146

(9) Map Reduce 292 228 0 87 1369 4 42
Table 4: Breakdown of most common Javascript and MongoDB errors by question

Question Median Time # Submissions # Attempted Questions # Completed Questions
(HH:MM)

(1) Selection and projection using find() (Ba-
sic)

00:32 2788 527 525

(2) Selection and projection using find() (Ad-
vanced)

11:15 6563 524 524

(3) Aggregation pipeline with group and project 18:24 7899 525 525
(4) Aggregation pipeline with match, group, sort
and project

10:39 7421 523 522

(5) Aggregation pipeline with unwind operator 16:13 10014 521 518
(6) Querying arrays 08:01 10951 521 517
(7) Querying embedded documents 07:09 10528 517 515
(8) Querying linked documents using cursor 10:29 9811 514 510
(9) Map Reduce 09:35 10216 502 499

Table 5: The Breakdown of Concepts and attempts to apply them with median time

7 Conclusion

In this paper we shed a light on students experiences when
learning a NoSQL Database, MongoDB, using over 76 thousands
MongoDB queries written by 527 students. Our work shows that
students take comparable time and number of submissions on ad-
vanced concepts. Also, we found that students make more Refer-
ence errors in advanced queries than other queries. In addition, we
found that students seem to make more JavaScript Errors when
their queries have more complex MongoDB queries. Finally, we no-
ticed that when students learn new operators of MongoDB. These
results should help instructors to enhance their curriculum by allot-
ting students more time for the MongoDB concepts discussed above
and giving novices better expectations about learning MongoDB.

Acknowledgments
Redacted for anonymization.

References
[1] 2020. Map-Reduce. https://docs.mongodb.com/manual/core/map-reduce/
[2] 2020. MongoDB vs MySQL. https://www.mongodb.com/compare/mongodb-

mysql
[3] 2020. The most popular database for modern apps. https://www.mongodb.com/
[4] 2020. Operators. https://docs.mongodb.com/manual/reference/operator/
[5] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and Its Application to Predicting Students’ Success. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education (SIGCSE ’16).
ACM, New York, NY, USA, 401–406. https://doi.org/10.1145/2839509.2844640

[6] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-
titative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’15). ACM, New York, NY,
USA, 201–206. https://doi.org/10.1145/2729094.2742620



[7] Anonymous. 2015. Paper Describing an Online Learning System.
[8] Anonymous. 20XX. Paper analyzing student’s SQL homework solutions.
[9] Brad Fowler, Joy Godin, and Margaret Geddy. [n.d.]. Teaching Case: Introduction

to NoSQL in a Traditional Database Course. http://jise.org/Volume27/n2/
JISEv27n2p99.html

[10] Minzhe Guo, Kai Qian, and Li Yang. 2016. Hands-on labs for learning mobile
and NoSQL database security. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Vol. 2. IEEE, 606–607.

[11] Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. 2016. Developing
Hands-on Labware for Emerging Database Security. In Proceedings of the 17th
Annual Conference on Information Technology Education (SIGITE ’16). Association
for Computing Machinery, New York, NY, USA, 60–64. https://doi.org/10.1145/
2978192.2978225

[12] Sriram Mohan. 2018. Teaching NoSQL Databases to Undergraduate Students:
A Novel Approach. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 314–319. https://doi.org/10.1145/3159450.3159554

[13] Neo4j, Inc. 2019. Neo4j. https://neo4j.com/
[14] Oracle Corporation. 2019. MySQL. https://www.mysql.com/
[15] Stack Overflow. 2019. Stack Overflow Developer Survey 2019. https:

//insights.stackoverflow.com/survey/2019/ [Online; accessed 10-January-2020].
[16] Toni Taipalus and Piia Perälä. 2019. What to Expect and What to Focus on in

SQL Query Teaching. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 198–203. https://doi.org/10.1145/3287324.3287359

[17] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and Compli-
cations in SQL Query Formulation. ACM Trans. Comput. Educ. 18, 3, Article 15
(Aug. 2018), 29 pages. https://doi.org/10.1145/3231712


